
EECS10: Comp. Methods in ECE Lecture 9

(c) 2013 R. Doemer 1

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 1

Lecture 9.2: Overview

• Data Structures
– Pointers

• Pointer definition

• Pointer initialization, assignment

• Pointer dereferencing

– Pointer arithmetic
• Increment, decrement

– Pointer comparison

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 2

Pointers

• Pointers are variables whose values are addresses
– The “address-of” operator (&) returns a pointer!

• Pointer Definition
– The unary * operator indicates a pointer type in a definition

• Pointer initialization or assignment
– A pointer may be set to the “address-of” another variable

– A pointer may be set to 0 (points to no object)

– A pointer may be set to NULL (points to “NULL” object)

int x = 42; /* regular integer variable */
int *p; /* pointer to an integer */

p = &x; /* p points to x */

p = 0; /* p points to no object */

#include <stdio.h> /* defines NULL as 0 */
p = NULL; /* p points to no object */

EECS10: Comp. Methods in ECE Lecture 9

(c) 2013 R. Doemer 2

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 3

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

0

p

42

x

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 4

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */

p

42

x

EECS10: Comp. Methods in ECE Lecture 9

(c) 2013 R. Doemer 3

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 5

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42

p

42

x

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 6

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);
*p = 2 * *p; /* multiply content of p by 2 */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42
x is 84, content of p is 84

p

84

x

EECS10: Comp. Methods in ECE Lecture 9

(c) 2013 R. Doemer 4

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 7

Pointers

• Pointer Dereferencing
– The -> operator dereferences a pointer to a structure

to the content of a structure member

struct Student
{ int ID;

char Name[40];
char Grade;

};

struct Student Jane =
{1001, “Jane Doe”, ‘A’};

struct Student *p = &Jane;

void PrintStudent(void)
{

printf(“ID: %d\n”, p->ID);
printf(“Name: %s\n”, p->Name);
printf(“Grade: %c\n”, p->Grade);

}

1001
“Jane Doe”

‘A’

Jane

ID

Name

Grade

ID: 1001
Name: Jane Doe
Grade: A

p

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 8

Pointers

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */

20,

EECS10: Comp. Methods in ECE Lecture 9

(c) 2013 R. Doemer 5

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 9

20,

Pointers

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */

20, 30,

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 10

20, 30,

Pointers

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */
p--; /* decrement p by 1 */
printf(“%d, ”, *p); /* print content of p */

20, 30, 20,

EECS10: Comp. Methods in ECE Lecture 9

(c) 2013 R. Doemer 6

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 11

20, 30, 20,

Pointers

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */
p--; /* decrement p by 1 */
printf(“%d, ”, *p); /* print content of p */
p += 2; /* increment p by 2 */
printf(“%d, ”, *p); /* print content of p */

20, 30, 20, 40,

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 12

Pointers

• Pointer Comparison
– Pointers may be compared for equality

• operators == and != are useful to determine identity

• operators <, <=, >=, and > are not applicable

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2; /* pointers to integer */

p1 = &x[1]; p2 = &x[3]; /* point to x[1], x[3] */

if (p1 == p2)
{ printf(“p1 and p2 are identical!\n”);
}

if (*p1 == *p2)
{ printf(“Contents of p1 and p2 are the same!\n”);
}

Contents of p1 and p2 are the same!

EECS10: Comp. Methods in ECE Lecture 9

(c) 2013 R. Doemer 7

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 13

Pointers

• Pointer Comparison
– Pointers may be compared for equality

• operators == and != are useful to determine identity

• operators <, <=, >=, and > are not applicable

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2; /* pointers to integer */

p1 = &x[1]; p2 = &x[3]; /* point to x[1], x[3] */
p1 += 2; /* increment p1 by 2 */
if (p1 == p2)

{ printf(“p1 and p2 are identical!\n”);
}

if (*p1 == *p2)
{ printf(“Contents of p1 and p2 are the same!\n”);
}

p1 and p2 are identical!
Contents of p1 and p2 are the same!

