EECS10: Comp. Methods in ECE

Lecture 9.2: Overview

e Data Structures

— Pointers
 Pointer definition
 Pointer initialization, assignment
* Pointer dereferencing
— Pointer arithmetic
* Increment, decrement

— Pointer comparison

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer

Pointers

» Pointers are variables whose values are addresses
— The “address-of” operator (&) returns a pointer!
» Pointer Definition
— The unary * operator indicates a pointer type in a definition
int x = 42; /* regular integer variable */
int *p; /* pointer to an integer */
» Pointer initialization or assignment

— A pointer may be set to the “address-of” another variable
|p = &X; /* p points to x */ |

— A pointer may be set to O (points to no object)
|p = 0; /* p points to no object */ |

— A pointer may be set to NULL (points to “NULL" object)

#include <stdio.h> /* defines NULL as 0 */
p = NULL; /* p points to no object */

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer

(c) 2013 R. Doemer

Lecture 9

EECS10: Comp. Methods in ECE

Pointers

» Pointer Dereferencing

— The unary * operator dereferences a pointer
to the value it points to (“content-of” operator)

#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

P X
o | [4 |

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer

Pointers

» Pointer Dereferencing

— The unary * operator dereferences a pointer
to the value it points to (“content-of” operator)

#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */
p = &X; /* make p point to x */

P X
[e— 42 |

EECS10: Computational Methods in ECE, Lecture 9

(c) 2013 R. Doemer

(c) 2013 R. Doemer

Lecture 9

EECS10: Comp. Methods in ECE Lecture 9

Pointers

» Pointer Dereferencing

— The unary * operator dereferences a pointer
to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */
p = &X; /* make p point to x */

printf(“x is %d, content of p is %d\n”, x, *p);

X is 42, content of p is 42

P X
L — o 42 |
EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 5

» Pointer Dereferencing

— The unary * operator dereferences a pointer
to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &X; /* make p point to x */

printf(“x is %d, content of p is %d\n”, X, *p);
*p = 2 * *p; /* multiply content of p by 2 */
printf(“x is %d, content of p is %d\n”, X, *p);

X is 42, content of p is 42
X is 84, content of p is 84

p X
L e—] » 84 |
EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 6

(c) 2013 R. Doemer 3

EECS10: Comp. Methods in ECE

» Pointer Dereferencing

Pointers

— The -> operator dereferences a pointer to a structure
to the content of a structure member

struct Student
{ int 1ID;
char Name[40];
char Grade;
};
struct Student Jane =
{1001, “Jane Doe”, “A’};

struct Student *p = &Jane;

p

—

Jane
v

ID 1001

Name [“Jane Doe”

= ?
void PrintStudent(void) Grade A
{
printf(“ID: %d\n”, p->1D); -
printf(“Name: %s\n”, p->Name); ID: 1001
printf(“Grade: %c\n”, p->Grade); Name: Jane Doe
} Grade: A

EECS10: Computational Methods in ECE, Lecture 9

(c) 2013 R. Doemer

» Pointer Arithmetic

Pointers

— Pointers pointing into arrays may be ...
« ... iIncremented to point to the next array element
« ... decremented to point to the previous array element

int *p;

p = &x[1];
printfC%d, . *p);

int x[5] = {10,20,30,40,50}; /*

/*

/*
/*

array of 5 integers */
pointer to integer */
point p to x[1] */

print content of p */

20,

EECS10: Computational Methods in ECE, Lecture 9

(c) 2013 R. Doemer

(c) 2013 R. Doemer

Lecture 9

EECS10: Comp. Methods in ECE

e Pointer Arithmetic

Pointers

— Pointers pointing into arrays may be ...
... Incremented to point to the next array element
... decremented to point to the previous array element

int *p;

p = &x[1];
printf(%d, ”, *p);
p++;

printf(%d, ”, *p);

/*

/*
/*
/*
/*

int x[5] = {10,20,30,40,50}; /* array of 5 integers */

pointer to integer */

point p to x[1] */
print content of p */
increment p by 1 */
print content of p */

20, 30,

EECS10: Computational Methods in ECE, Lecture 9

(c) 2013 R. Doemer

» Pointer Arithmetic

Pointers

— Pointers pointing into arrays may be ...
« ... iIncremented to point to the next array element
« ... decremented to point to the previous array element

int *p;

p = &x[1];
printf(“%d, ”, *p);
p++;

printf(“%d, ”, *p);

printf(“%d, ”, *p);

int x[5] = {10,20,30,40,50}; /*

/*

/*
/*
/*
/*
/*
/*

array of 5 integers */
pointer to integer */

point p to x[1] */
print content of p */
increment p by 1 */
print content of p */
decrement p by 1 */
print content of p */

20, 30, 20,

EECS10: Computational Methods in ECE, Lecture 9

(c) 2013 R. Doemer

10

(c) 2013 R. Doemer

Lecture 9

EECS10: Comp. Methods in ECE

Pointers

e Pointer Arithmetic

— Pointers pointing into arrays may be ...
... Incremented to point to the next array element
... decremented to point to the previous array element

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */
p = &[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */
p--3 /* decrement p by 1 */
printf(“%d, ”, *p); /* print content of p */
p += 2; /* increment p by 2 */
printf(“%d, ”, *p); /* print content of p */

|20, 30, 20, 40,

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer

11

Pointers

» Pointer Comparison

— Pointers may be compared for equality
» operators == and != are useful to determine identity
 operators <, <=, >=, and > are not applicable

int x[5] = {10,20,10,20,10}; /* array of 5 integers */

int *pl, *p2; /* pointers to integer */
pl = &x[1]; p2 = &x[3]; /* point to x[1], x[3] */
it (pl == p2)

{ printf(*pl and p2 are identical!\n™);

3

it (*pl == *p2)
{ printf(“Contents of pl and p2 are the same!\n”);

Contents of pl and p2 are the same!

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer

12

(c) 2013 R. Doemer

Lecture 9

EECS10: Comp. Methods in ECE

EECS10: Computational Methods in ECE, Lecture 9

Pointers

» Pointer Comparison

— Pointers may be compared for equality
« operators == and != are useful to determine identity
 operators <, <=, >=, and > are not applicable

int x[5] = {10,20,10,20,10}; /* array of 5 integers */

int *pl, *p2; /* pointers to integer */
pl = &x[1]; p2 = &x[3]; /* point to x[1], x[3] */
pl += 2; /* increment pl by 2 */

it (p1 == p2)
{ printf(“pl and p2 are identical!\n™);
b
it (*pl == *p2)
{ printf(“Contents of pl and p2 are the same!\n”);

pl and p2 are identical!

Contents of pl and p2 are the same!

(c) 2013 R. Doemer

13

(c) 2013 R. Doemer

Lecture 9

