
1

Embedded Systems Modeling and Design
ECPS 203
Fall 2017

Assignment 8

Posted: November 22, 2017
Due: November 29, 2017 at 6pm

Topic: Pipelined and parallel design-under-test module of the Canny Edge Decoder

1. Setup:

This assignment continues the modeling of our application example, the Canny Edge Detector,
towards an embedded system implementation. This time we will refine the previous SystemC
model with back-annotated timing and further pipeline and parallelize the components in the
design-under-test (DUT) module. Over the course of the steps outlined below, our design model
will be refined from an untimed model into one with estimated delays where the simulation
allows us to observe the improved performance due to pipelining and parallelization.

Again, we will use the same setup as for the previous assignments. Start by creating a new
working directory with a link to the video files.

mkdir hw8
cd hw8
ln –s ~ecps203/public/video video

As starting point, you can use your own SystemC model which you have created in the earlier
Assignment 6 (not the C++ model from Assignment 7). Alternatively, you may start from the
provided solution for Assignment 6 which you can copy as follows:

 cp ~ecps203/public/CannyA6_ref.cpp Canny.cpp

You may also want to reuse the Makefile from the previous assignments:

 cp ~ecps203/public/MakefileA5 Makefile

Finally, you will need to adjust your stack size again. If you use the csh or tcsh shell, use:

limit stacksize 128 megabytes

On the other hand, if you use the sh or bash shell, use this:

ulimit -s 128000

2

2. Pipelining and Parallelization of the Canny Model

Step 1: Instrument the model with logging of simulation time and frame delay

In order to observe the performance of the application in the simulator, we need to insert
statements to monitor the simulation time in the test bench (Step 1) and then instrument the
model with estimated delays in the DUT (Step 2).

As an initial starting point, let’s simply measure the time it takes to process each frame. To do
that, we let the Stimulus module note the start time of processing each frame and communicate
that to the Monitor which, in turn, can then compute and display the delay incurred while
processing each frame.

For the needed communication from Stimulus to Monitor, instantiate a sc_fifo channel with
sufficient buffer space for the frame start times. The channel of type sc_fifo<sc_time>
should pass simulation time stamps from the Stimulus to the Monitor module. In the Stimulus,
take the current simulation time right after sending out the frame image, print it to the screen for
observation, and also send it to the Monitor through the new channel. In the Monitor, take the
difference between the current time and the time the frame was sent, and display this delay on
the screen for each frame.

The following log illustrates the desired screen output (with the exception that your log in this
initial step will show all times as zero):

 0 s: Stimulus sent frame 1.
 0 s: Stimulus sent frame 2.
 0 s: Stimulus sent frame 3.
 0 s: Stimulus sent frame 4.
 0 s: Stimulus sent frame 5.
 0 s: Stimulus sent frame 6.
 0 s: Stimulus sent frame 7.
 0 s: Stimulus sent frame 8.
 427 ms: Stimulus sent frame 9.
 854 ms: Stimulus sent frame 10.
 1281 ms: Stimulus sent frame 11.
 [...]
 3422 ms: Stimulus sent frame 16.
 3892 ms: Monitor received frame 1 with 3892 ms delay.
 4452 ms: Stimulus sent frame 17.
 4922 ms: Monitor received frame 2 with 4922 ms delay.
 [...]
 17282 ms: Monitor received frame 14 with 14720 ms delay.
 17842 ms: Stimulus sent frame 30.
 18312 ms: Monitor received frame 15 with 15323 ms delay.
 19342 ms: Monitor received frame 16 with 15920 ms delay.
 [...]
 32732 ms: Monitor received frame 29 with 15920 ms delay.
 33762 ms: Monitor received frame 30 with 15920 ms delay.
 33762 ms: Monitor exits simulation.

3

As shown above, it is recommended to prefix each log line with the current simulation time as
this significantly simplifies understanding and any needed debugging. (If you prefer, you may
use the official SystemC SC_REPORT_INFO(“type”,“msg”) facilities with enabled timing.)
Also shown above is the choice of milli-seconds (noted as ms) as the time unit which fits well for
our application.

You want to keep a copy of your model at this stage, say CannyA8_step1.cpp, so that you
can compare the observed timing among the different models in this assignment at the end.

Step 2: Back-annotate the estimated timing into the main DUT modules

As result of the previous Assignment 7, we have obtained timing measurements for the main
modules in the DUT. These measurements can now serve as good estimates for the SystemC
model and serve the purpose of observing the effects of model transformations we apply in this
and the following assignment.

For consistency and easier discussion of this assignment, we will choose here the timing
measurements from Assignment 7 as discussed in Lecture 17. Specifically, we will assume the
following delays for the current DUT components:

Receive_Image 0 ms
Make_Kernel 0 ms
BlurX 1710 ms
BlurY 1820 ms
Derivative_X_Y 480 ms
Magnitude_X_Y 1030 ms
Non_Max_Supp 830 ms
Apply_Hysteresis 670 ms

Back-annotate these delays into your SystemC model by inserting corresponding wait-for-time
statements into the main method of each DUT component. For consistency, these wait-for-time
statements should be placed right after receiving the input data for the function and before its
computation code.

After inserting the wait-for-time statements, run your model and observe the simulation time and
frame delays reported by the log. (Hint: You should see similar times as listed in the example
log above.)

Again, you want to keep a copy of your model at this stage, say CannyA8_step2, so that you
can compare this initial observed timing with the improvements in the following models.

Step 3: Pipeline the DUT into a sequence of 7 stages

As discussed in Lecture 16, we will use pipelining as the main overall technique to improve the
throughput of the DUT.

Since our DUT components are already communicating via sc_fifo channels, there is not
much to do for this step. The model from Assignment 6 is already pipelined. However, there
may be data being passed from one pipeline stage to a stage later then the next one. Without
sufficient buffering, this will lead to performance problems. Thus, make sure that all data in the
DUT pipeline is passed only from one stage to its immediate next stage, and you use buffer

4

sizes of 1 everywhere. You may need to pass some data explicitly through a stage to get this
“clean pipeline” structure.

As a result of this step, your DUT model should contain a total of 7 pipeline stages, 2 of which
may be wrapped inside the Gaussian Smooth module. Be sure to simulate the model and
observe the timing, as well as validate the produced images for correctness.

Again, please keep a copy of your model at this stage and name it CannyA8_step3.

Step 4: Slice the BlurX and BlurY modules into parallel threads

Finally we will remedy the identified performance bottleneck in the BlurX and BlurY modules
by use of parallelization. As discussed in Lecture 17, both blocks are straightforward to optimize
by parallelizing the operations in the rows and columns, respectively. While we could technically
operate on every single row or column in parallel (as a real graphics processing unit (GPU)
could do it), we will limit our efforts to 4 parallel slices for this assignment.

Specifically, extend the existing BlurX and BlurY modules by using 4 parallel SC_THREADs
which each operate on a one-quarter slice of the image. For example, the 1st thread will process
the rows from (ROWS/4)*0 through (ROWS/4)*1-1 and the 2nd thread will process the rows
from (ROWS/4)*1 through (ROWS/4)*2-1, and so on. Be sure to adjust the back-annotated
timing delays for the expected speedup of 4x.

For synchronizing the operation of the 4 parallel threads, let a main thread read the input image,
then send a start event to each of the 4 worker threads, and then wait for a done event from
each of the worker threads, before the main thread sends the produced image to the output.

As a result of this assignment, your final model CannyA8_step4 should execute significantly
faster (in simulated time) than in the previous step.

Note the timing of each model and report it in your text file submission. Specifically, we are
interested in the total simulation time and the longest delay for processing a frame for each of
the 4 steps of model refinement. Thus, report the observed timings in the following table:

Model Frame Delay Total simulation time
CannyA8_step1 ... ms ... ms
CannyA8_step2 ... ms ... ms
CannyA8_step3 ... ms ... ms
CannyA8_step4 ... ms ... ms

3. Submission:

For this assignment, submit the following deliverables:

Canny.cpp (the final model CannyA8_step4 from above)
Canny.txt (the table with the timings observed above)

As before, the text file should also briefly mention whether or not your efforts were successful
and what (if any) problems you encountered.

5

To submit these files, change into the parent directory of your hw8 directory and run the
~ecps203/bin/turnin.sh script.

As before, be sure to submit on time. Late submissions will not be considered!

To double-check that your submitted files have been received, you can run the
~ecps203/bin/listfiles.py script.

For any technical questions, please use the course message board.

--
Rainer Doemer (EH3217, x4-9007, doemer@uci.edu)

