
ECPS203: Embedded Systems Modeling and Design Lecture 1

(c) 2017 R. Doemer 1

ECPS 203
Embedded Systems Modeling and Design

Lecture 1

Rainer Dömer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 2

Lecture 1: Overview

• Course Overview
– Context, description, content

• Course Administration
– Schedule, assignments, communication

– Academic honesty

• Introduction to Embedded System Design
– Embedded computer systems

– Design challenges

• Project Assignment 1
– Setup and introduction to application example

ECPS203: Embedded Systems Modeling and Design Lecture 1

(c) 2017 R. Doemer 2

Course Context

• Professional Master Degree Program
– Master of Embedded and Cyber-Physical Systems (MECPS)

• Courses
– Fall quarter

• ECPS 203: Embedded systems modeling and design
• ECPS 205: Sensors, actuators and sensor networks
• ECPS 206: Real-time and distributed systems

– Winter quarter
• ECPS 202: Cyber-physical systems design
• ECPS 204: Embedded system software
• ECPS 209: CPS case studies

– Spring quarter
• ECPS 207: Security, privacy and regulatory considerations
• ECPS 208: Control systems for CPS
• ECPS 210: Project

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 3

Course Context

• Embedded Systems in the Big Picture

 Positioned in a networked world:
From System-on-Chip (SoC) to Internet of Things (IoT)

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 4

Cyber-Physical System

Sensors ActuatorsEmbedded
Computer System

Hardware

Software

Control

ECPS203: Embedded Systems Modeling and Design Lecture 1

(c) 2017 R. Doemer 3

Course Description

• ECPS 203:
Embedded Systems Modeling and Design (4)
– Embedded systems definition,

system-level specification,
models and languages.

– Concepts, requirements, examples.

– Embedded system models at different levels of abstraction.

– Test benches, design under test, IP components.

– Discrete event simulation, semantics, and algorithms.

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 5

Course Content

1. Embedded system concepts, models of computation

2. Application introduction, case study example

3. IEEE SystemC system-level description language

4. Application specification, modeling guidelines

5. Validation, discrete event simulation, estimation

6. Levels of abstraction, co-design methodology

7. Top-down system design methodology

8. Embedded system architecture, HW/SW partitioning

9. Cycle-accurate, register transfer level models

10. Project discussion, completion, report

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 6

ECPS203: Embedded Systems Modeling and Design Lecture 1

(c) 2017 R. Doemer 4

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 7

Course Administration

• Course web pages at
http://eee.uci.edu/17f/16905/
– Instructor information

– Course syllabus and policies

– Objectives and outcomes

– Contents and schedule

– Resources and communication

– Assignments

Academic Honesty

• Honesty and Integrity are Required
– See UCI Office of Academic Integrity & Student Conduct

– See course policy on course web site

• Plagiarism
– Theft of intellectual property

– Taking someone else's work or ideas
and passing them off as one's own

 Do not copy code!

• Violations will be reported
– Academic misconduct report to UCI Office of AISC

• Interview, written report, AISC staff meeting, decision, …

– Possible sanctions
• Warning, probation, suspension, dismissal

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 8

ECPS203: Embedded Systems Modeling and Design Lecture 1

(c) 2017 R. Doemer 5

Academic Honesty

• Example (F’16):
 Moss:

Automatic system
for determining
similarity
of program code

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 9

Academic Honesty

• Example (S’16): Automatic text transformation
– Technical Report 1:

– Technical Report 2:

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 10

1 INTRODUCTION
With complexities of Systems-on-Chip rising almost daily, the design community has
been searching for new methodology that can handle given complexities with
increased productivity and less time. The modeling and design of embedded systems
can be performed at several abstraction levels. The highest level of abstraction is the
System level, where the functionality is described using “system-level specification”
(in the case of VLSI design, description languages like VHDL or Verilog) and the
architecture is seen as building blocks consisting of processors, memories, etc. …

INTRODUCTION:
SOC challenges are changing day by day, the plan group has been hunting down new
philosophy that can deal with given complexities with expanded efficiency and less
time. The displaying and plan of implanted frameworks can be performed at a few
reflection levels. The most abnormal amount of reflection is the System level, where
the usefulness is portrayed utilizing "framework level determination" (on account of
VLSI plan, depiction dialects like VHDL or Verilog) and the design is viewed as
building pieces comprising of processors, recollections, and so on…

ECPS203: Embedded Systems Modeling and Design Lecture 1

(c) 2017 R. Doemer 6

• Embedded Computer Systems
– Examples

– Design Challenges

– Design Advantages

• Design Complexity
– Hardware design gap

– Software design gap

– System design gap

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 11

Embedded System Design

Cyber-Physical System

Sensors ActuatorsEmbedded
Computer System

Hardware

Software

Control

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 12

Embedded Computer Systems

• Computers are ubiquitous, omnipresent…

• System-on-Chip (SoC) Design:
Design of complex embedded systems
on a single chip

ECPS203: Embedded Systems Modeling and Design Lecture 1

(c) 2017 R. Doemer 7

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 13

Embedded Systems

• System embedded into cyber-physical system
– Constraints from external input (often real-time)

– Application specific (not general purpose)

• Omnipresent in our environment
– Pervasive in many application domains

– In 2005 [Source Netrino]

• Only 2% of all processors in workstations

• Remaining 8.8 billion in embedded systems

– Most computers are embedded systems!

Source: PhilipsSource: Miele

Source: P. Chou, UCI

Source: Edumicator

Source: www.medicacorp.com/Source: www.trouper.com

Source:
Motorola Inc

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 14

Embedded System Design

• Design challenges
– Often mobile

• Battery powered (low power)

– Often highly reliable
• Extreme environment (e.g. temperature)

– High performance constraints
• Often real-time requirements

– High complexity
• E.g. Mercedes Benz E-class

– 55 electronic control units

– 5 communication busses

– Tightly coupled
• Software

• Hardware

– Rapid development
for low price…

Source: Daimler

ECPS203: Embedded Systems Modeling and Design Lecture 1

(c) 2017 R. Doemer 8

Source: Xilinx

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 15

Embedded System Design

• Design Advantages
– Application known at design time

– Environment known at design time

 Allows for customized / optimized solution
• Improved performance

• More functionality

• At lower power

• Custom Platform, SW and HW components
– Multi-Processor System-on-Chip (MPSoC),

• Complete embedded system integrated on a chip

– General-purpose and application-specific processors

– Application Specific Integrated Circuit (ASIC)

– Field Programmable Gate Array (FPGA)

– Circuit board with off-the-shelf-components

Source: simh.trailing-edge.com

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 16

Design Complexity Challenge

• Productivity Gap
Hardware design gap

+ Software design gap

= System design gap

HW Design
Productivity
1.6x/18 months

Capability of
Technology
2x/18 months

Software
Productivity
2x/5 years

log

19
81

19
85

19
89

19
93

19
97

20
01

20
05

20
09

Average HW +
SW Productivity

Additional SW
required for HW
2x/10 months

System
Design Gap

HW Design
Gap

time

(source: “Hardware-dependent Software”, Ecker et al., 2009)

ECPS203: Embedded Systems Modeling and Design Lecture 1

(c) 2017 R. Doemer 9

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 17

Design Complexity Challenge

• Productivity Gaps
– Hardware productivity gap

• Capacities in chip size outpace capabilities in chip design

• Moore’s law: chip capacity doubles every 18 months

• HW design productivity estimated at 1.6x over 18 months

– Software productivity gap
• Growth of SW productivity estimated at 2x every 5 years

• Needs in embedded SW estimated at 2x over 10 months

– System productivity gap
• HW gap + SW gap

ECPS 203 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a digital camera

– Application source and documentation:
• http://marathon.csee.usf.edu/edge/edge_detection.html

• http://en.wikipedia.org/wiki/Canny_edge_detector

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 18

golfcart.pgm golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

ECPS203: Embedded Systems Modeling and Design Lecture 1

(c) 2017 R. Doemer 10

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 19

Homework Assignment 1

• Setup
– EECS Department Linux Servers

• crystalcove.eecs.uci.edu, and other beaches

• Linux environment (CentOS 6.8)
• Remote access via secure shell protocol (SSH)

– Accounts
• Login ID is your UCInetID

• Password is the same as your EEE password

– Login and make yourself familiar with
• Command-line tools and GUI tools (which need X client)

• Text editing and C/C++ programming

• Image processing tools

Homework Assignment 1

• Task: Introduction to Application Example
– Canny Edge Detector

– Algorithm for edge detection in digital images

• Steps
1. Setup your Linux programming environment

2. Download, adjust, and compile the application C code
with the GNU C compiler (gcc)

3. Study the application, determine function-call tree

• Deliverables
– Source code and text file: canny.c, canny.txt

• Due
– Wednesday, next week: October 11, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 1 (c) 2017 R. Doemer 20

