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Lecture 13: Overview

• Embedded System Design Flow
– Top-down design methodology

– Refinement-based design flow
• Specify

• Explore

• Refine

• System-on-Chip Environment (SCE)
– Application example: GSM Vocoder

– Interactive demonstration (part 1)
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Top-Down Design Methodology
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Specify, Explore, Refine - Methodology
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Specify, Explore, Refine - Design Flow

• Refinement steps
– Architecture refinement (Specification -> Architecture)
– Communication refinement (Architecture -> Communication)
– Cycle-accurate refinement (Communication -> RTL/IS)

• HW / SW / interface synthesis

• Levels of abstraction
– Specification model: untimed, functional
– Architecture model: estimated, structural
– Communication model: timed, bus-functional
– Implementation model: cycle-accurate, RTL/IS

• Component data bases
– Algorithms for specification
– Components for architecture
– Busses for communication
– RTOS for SW
– RTL components for HW
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Specify, Explore, Refine - Design Flow

• Refinement Step 1: System Architecture
– Allocation of Processing Elements (PE)

• Type and number of processors

• Type and number of custom hardware blocks

• Type and number of system memories

– Mapping to PEs
• Map each behavior to a PE

• Map each channel to a PE

• Map each variable to a PE

Result
• System architecture of concurrent PEs

with abstract communication via channels
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Specify, Explore, Refine - Design Flow

• Refinement Step 2: PE Scheduling
– For each PE, serialize the execution of behaviors 

to a single thread of control
– Option (a): Static scheduling

• For each set of concurrent behaviors,
determine fixed order of execution

– Option (b): Dynamic RTOS scheduling
• Choose scheduling policy,

e.g. round-robin or priority-based
• For each set of concurrent behaviors,

determine scheduling priority

Result
• System model with abstract scheduler

inserted in each PE
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System-on-Chip Environment (SCE)

• Integrated Development Environment (IDE)
with support of:
– Graphical frontend (sce, scchart)

– SLDL-aware editor (sced)

– Compiler and simulator (scc)

– Profiling and analysis (scprof)

– Architecture refinement (scar)

– RTOS refinement (scos)

– Communication refinement (sccr)

– RTL refinement (scrtl)

– Software refinement (sc2c)

– Scripting interface (scsh)

– Tools and utilities (sir_list, sir_tree, …)
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SCE Main Window

Copyright © 2003 CECS
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SCE Source Editor

Copyright © 2003 CECS
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SCE Hierarchy Displays

Copyright © 2003 CECS
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SCE Compiler and Simulator

Copyright © 2003 CECS
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SCE Profiling and Analysis

Copyright © 2003 CECS
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SCE Demonstration

• Application Example: GSM Vocoder
– Enhanced full-rate voice codec

• GSM standard for mobile telephony (GSM 06.10)

• Lossy voice encoding/decoding
• Incoming speech samples @ 104 kbit/s

• Encoded bit stream @ 12.2 kbit/s

• Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)

– Real-time constraint:
• max. 20ms per speech frame

(max. total of 3.26s for sample speech file)

– SpecC specification model
• 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)

• 73 leaf behaviors

• 9139 formatted lines of SpecC code
(~13000 lines of original C code, including comments)

Copyright © 2003 CECS


