
ECPS203: Embedded Systems Modeling and Design Lecture 13

(c) 2017 R. Doemer 1

ECPS 203
Embedded Systems Modeling and Design

Lecture 13

Rainer Dömer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

ECPS203: Embedded Systems Modeling and Design, Lecture 13 (c) 2017 R. Doemer 2

Lecture 13: Overview

• Embedded System Design Flow
– Top-down design methodology

– Refinement-based design flow
• Specify

• Explore

• Refine

• System-on-Chip Environment (SCE)
– Application example: GSM Vocoder

– Interactive demonstration (part 1)



ECPS203: Embedded Systems Modeling and Design Lecture 13

(c) 2017 R. Doemer 2

ECPS203: Embedded Systems Modeling and Design, Lecture 13 (c) 2017 R. Doemer 3

Top-Down Design Methodology

untimed

estimated timing

timing accurate

cycle accurate

constraints
T
I

M
I
N
Gpure functional

transaction level

bus functional

RTL / IS

requirements
S
T
R
U
C
T
U
R
E

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Comp.
IP

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

RTOS
IP

RTL
IP

Architecture refinement

Capture

Communication model

Product specification

Manufacturing

ECPS203: Embedded Systems Modeling and Design, Lecture 13 (c) 2017 R. Doemer 4

Specify, Explore, Refine - Methodology

System design Validation flow

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
compilation

Interface
synthesis

Hardware
synthesis

Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Architecture refinement

Capture



ECPS203: Embedded Systems Modeling and Design Lecture 13

(c) 2017 R. Doemer 3

ECPS203: Embedded Systems Modeling and Design, Lecture 13 (c) 2017 R. Doemer 5

Specify, Explore, Refine - Design Flow

• Refinement steps
– Architecture refinement (Specification -> Architecture)
– Communication refinement (Architecture -> Communication)
– Cycle-accurate refinement (Communication -> RTL/IS)

• HW / SW / interface synthesis

• Levels of abstraction
– Specification model: untimed, functional
– Architecture model: estimated, structural
– Communication model: timed, bus-functional
– Implementation model: cycle-accurate, RTL/IS

• Component data bases
– Algorithms for specification
– Components for architecture
– Busses for communication
– RTOS for SW
– RTL components for HW

Specification

Architecture

Refinement

Implementation

SWI/FHW

Refinement

Capture

Communication

ECPS203: Embedded Systems Modeling and Design, Lecture 13 (c) 2017 R. Doemer 6

Specify, Explore, Refine - Design Flow

• Refinement Step 1: System Architecture
– Allocation of Processing Elements (PE)

• Type and number of processors

• Type and number of custom hardware blocks

• Type and number of system memories

– Mapping to PEs
• Map each behavior to a PE

• Map each channel to a PE

• Map each variable to a PE

Result
• System architecture of concurrent PEs

with abstract communication via channels

Specification

Architecture

Refinement

Implementation

SWI/FHW

Refinement

Capture

Communication



ECPS203: Embedded Systems Modeling and Design Lecture 13

(c) 2017 R. Doemer 4

ECPS203: Embedded Systems Modeling and Design, Lecture 13 (c) 2017 R. Doemer 7

Specify, Explore, Refine - Design Flow

• Refinement Step 2: PE Scheduling
– For each PE, serialize the execution of behaviors 

to a single thread of control
– Option (a): Static scheduling

• For each set of concurrent behaviors,
determine fixed order of execution

– Option (b): Dynamic RTOS scheduling
• Choose scheduling policy,

e.g. round-robin or priority-based
• For each set of concurrent behaviors,

determine scheduling priority

Result
• System model with abstract scheduler

inserted in each PE

Specification

Architecture

Refinement

Implementation

SWI/FHW

Refinement

Capture

Communication

ECPS203: Embedded Systems Modeling and Design, Lecture 13 (c) 2017 R. Doemer 8

System-on-Chip Environment (SCE)

• Integrated Development Environment (IDE)
with support of:
– Graphical frontend (sce, scchart)

– SLDL-aware editor (sced)

– Compiler and simulator (scc)

– Profiling and analysis (scprof)

– Architecture refinement (scar)

– RTOS refinement (scos)

– Communication refinement (sccr)

– RTL refinement (scrtl)

– Software refinement (sc2c)

– Scripting interface (scsh)

– Tools and utilities (sir_list, sir_tree, …)



ECPS203: Embedded Systems Modeling and Design Lecture 13

(c) 2017 R. Doemer 5

ECPS203: Embedded Systems Modeling and Design, Lecture 13 (c) 2017 R. Doemer 9

SCE Main Window

Copyright © 2003 CECS

ECPS203: Embedded Systems Modeling and Design, Lecture 13 (c) 2017 R. Doemer 10

SCE Source Editor

Copyright © 2003 CECS



ECPS203: Embedded Systems Modeling and Design Lecture 13

(c) 2017 R. Doemer 6

ECPS203: Embedded Systems Modeling and Design, Lecture 13 (c) 2017 R. Doemer 11

SCE Hierarchy Displays

Copyright © 2003 CECS

ECPS203: Embedded Systems Modeling and Design, Lecture 13 (c) 2017 R. Doemer 12

SCE Compiler and Simulator

Copyright © 2003 CECS



ECPS203: Embedded Systems Modeling and Design Lecture 13

(c) 2017 R. Doemer 7

ECPS203: Embedded Systems Modeling and Design, Lecture 13 (c) 2017 R. Doemer 13

SCE Profiling and Analysis

Copyright © 2003 CECS

ECPS203: Embedded Systems Modeling and Design, Lecture 13 (c) 2017 R. Doemer 14

SCE Demonstration

• Application Example: GSM Vocoder
– Enhanced full-rate voice codec

• GSM standard for mobile telephony (GSM 06.10)

• Lossy voice encoding/decoding
• Incoming speech samples @ 104 kbit/s

• Encoded bit stream @ 12.2 kbit/s

• Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)

– Real-time constraint:
• max. 20ms per speech frame

(max. total of 3.26s for sample speech file)

– SpecC specification model
• 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)

• 73 leaf behaviors

• 9139 formatted lines of SpecC code
(~13000 lines of original C code, including comments)

Copyright © 2003 CECS


