
ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 1

ECPS 203
Embedded Systems Modeling and Design

Lecture 19

Rainer Dömer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 2

Lecture 19: Overview

• Course Administration
• Final course evaluation

• Project Discussion
– A1: Introduction of Canny Edge Detection application

– A2: Clean C++ model with static memory allocation

– A4: From single image to video stream processing

– A5: Test bench model in SystemC

– A6: Structural DUT module, algorithm profiling

– A7: Performance measurement on prototyping board

– A8: Pipelined and parallel model with back-annotated timing

• Assignment 9
– Throughput optimization by pipeline load balancing

Discussion

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 2

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 3

Course Administration

• Final Course Evaluation
– Open until end of 10th week (Sunday night)

– Nov. 28, 2017, through Dec. 10, 2017, 11pm

– Online via EEE Evaluation application

• Mandatory Evaluation of Course and Instructor
– Voluntary

– Anonymous

– Very valuable

• Please spend 5 minutes for this survey!
– Your feedback is appreciated!

ECPS 203 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a digital camera

– Application source and documentation:
• http://marathon.csee.usf.edu/edge/edge_detection.html

• http://en.wikipedia.org/wiki/Canny_edge_detector

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 4

golfcart.pgm golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 3

Project Assignment 1

• Task: Introduction to Application Example
– Canny Edge Detector

– Algorithm for edge detection in digital images

• Steps
1. Setup your Linux programming environment

2. Download, adjust, and compile the application C code
with the GNU C compiler (gcc)

3. Study the application, determine function-call tree

• Deliverables
– Source code and text file: canny.c, canny.txt

• Due
– Wednesday, next week: October 11, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 5

Project Assignment 2

• Task: Clean C++ model with static memory allocation
– Prepare the C++ source code for modeling in SystemC

– Configure parameters for specific application

– Apply static memory allocation

• Steps
1. Fix the off-by-one bug in the non_max_supp function

2. Clean-up the code for compilation without warnings

3. Fix configuration parameters to compile-time constants

4. Remove or replace dynamic memory allocation

• Deliverables
– Source code and text file: canny.cpp, canny.txt

• Due
– Wednesday, next week: October 18, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 6

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 4

ECPS 203 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a digital video camera

– Process video shot by a drone flying over Engineering Plaza
 Fly a drone over UCI Engineering Plaza, take video of buildings

 Record a color video stream in high resolution, 2704 by 1520 pixels

 Extract a set of video frames suitable for use in our test bench

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 7

Engineering001.bmp Engineering001_edges.pgm

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Google Map of UCI Engineering Quad

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 8

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 5

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Drone flights in US

require approval
by the Federal
Aviation Administration
(FAA)

– On UCI campus,
Environmental Health
& Safety (EHS)
department is in charge
of Unmanned Aircraft
Safety

 Flight request approved
• Thursday,

October 19, 2017

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 9

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Drone Equipment

• DJI Phantom 3 Standard Quadcopter

• Remote Control with Mobile Device

– Drone carrries a Camera attached to a Gimble
• Video stream stored on a SD memory card, e.g. DJI_0001.MOV

• Video is 30 frames per second

• Frames are 2704 by 1520 pixels

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 10

[Image source: dji.com]

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 6

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Screen Shot of Drone Control App on Mobile Device

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 11

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Drone flight demonstration

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 12

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 7

ECPS 203 Project: Drone Flight

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a digital video camera

– Video taken by a drone flying over UCI Engineering Plaza
• Available on the server: ~ecps203/public/DroneFootage/

• High resolution, 2704 by 1520 pixes

• Representative sample, using 30 extracted frames for test bench model

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 13

Engineering012.png Engineering012_edges.pgm

Project Assignment 4

• Task: From Single Image to Video Stream Processing
– Prepare a sequence of image frames from the video

– Convert the Canny application to process video frames

• Steps
1. Extract 30 of video frames suitable for use in a test bench

2. Convert the color frames to grey-scale images in PGM format

3. Recode your Canny C++ model to process the video frames
 To run Canny application successfully, increase stack size

• Deliverables
– Source code and text file: Canny.cpp, Canny.txt

• Due
– Wednesday, November 1, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 14

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 8

Project Assignment 5

• Task: Test Bench for the Canny Edge Detector
– Convert C++ model to SystemC model

– Add a test bench structure around the C++ model

– Wrap DUT into a platform model with dedicated I/O units

• Steps
1. Create test bench structure: Stimulus, Platform, Monitor

2. Create platform model: DataIn, DUT, DataOut
3. Localize functions and use sc_fifo channels for communication

 Pay attention to thread stack sizes

• Deliverables
– SystemC source code and text file: Canny.cpp, Canny.txt

• Due
– Wednesday, November 8, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 15

Project Assignment 5

• Task: Test Bench for the Canny Edge Detector
– Expected instance tree

Top top

|------ Monitor monitor

|------ Platform platform

| |------ DUT canny

| |------ DataIn din

| |------ DataOut dout

| |------ sc_fifo<IMAGE> q1

| \------ sc_fifo<IMAGE> q2

|------ Stimulus stimulus

|------ sc_fifo<IMAGE> q1

\------ sc_fifo<IMAGE> q2

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 16

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 9

Project Assignment 5

• Task: Test Bench for the Canny Edge Detector
– Discussion on whiteboard: Chart of top-level structure

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 17

White board photo goes here!

Project Assignment 6

• Task: Structural refinement of the DUT module
– Refine the structural hierarchy of the DUT module

– Refine the structural hierarchy of the Gaussian Smooth module

– Profile the relative complexity of the Canny functions

• Steps
1. Create structure in DUT: Gaussian Smooth, …, Apply Hysteresis

2. Create structure in Gaussian Smooth: Input, Gauss, BlurX, BlurY

3. Profile the algorithm, obtain relative computational complexity

• Deliverables
– Canny.cpp (refined structural model)

– Canny.txt (profile of relative complexity of the DUT modules)

• Due
– Wednesday, November 15, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 18

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 10

Project Assignment 6

• Step 1: Refined structure of the DUT module
– Expected module instance tree

Platform platform

|------ DataIn din

|------ DUT canny

| |------ Gaussian_Smooth gaussian_smooth

| |------ Derivative_X_Y derivative_x_y

| |------ Magnitude_X_Y magnitude_x_y

| |------ Non_Max_Supp non_max_supp

| \------ Apply_Hysteresis apply_hysteresis

\------ DataOut dout

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 19

Project Assignment 6

• Step 2: Refined structure of the Gaussian Smooth module
– Expected module instance tree

DUT canny

|------ Gaussian_Smooth gaussian_smooth

| |------ Receive_Image receive

| |------ Gaussian_Kernel gauss

| |------ BlurX blurX

| \------ BlurY blurY

|------ Derivative_X_Y derivative_x_y

|------ Magnitude_X_Y magnitude_x_y

|------ Non_Max_Supp non_max_supp

\------ Apply_Hysteresis apply_hysteresis

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 20

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 11

Project Assignment 6

• Structural model of the DUT of the Canny Edge Detector
– Discussion on whiteboard: Chart of refined DUT structure

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 21

White board photo goes here!

Project Assignment 6

• Step 3: Profile the Canny functions
 Performance profiling of the Canny Edge Detector

 Determine the relative complexity of the Canny functions
• Is there any performance bottleneck?

• If so, Where?

– Use the GNU C/C++ profiling tools
 g++ -pg

 gprof

1. Compile the SystemC source code with option -pg

2. Run the simulation once with instrumentation, obtain gmon.out

3. Run the profiler: gprof Canny

4. Validate the reported call tree
5. Analyze the “flat profile” for the DUT components (self)

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 22

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 12

Project Assignment 6

• Step 3: Profile the Canny functions,
obtain relative computational complexity

– Profiled complexity comparison (in Canny.txt):

Gaussian_Smooth 42.64%

|------ Gaussian_Kernel 0%

|------ BlurX 22.73%

\------ BlurY 19.91%

Derivative_X_Y 6.12%

Magnitude_X_Y 16.09%

Non_Max_Supp 25.16%

Apply_Hysteresis 9.80%

100%

 Profiling results vary, but Gaussian Smooth is a bottleneck!

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 23

Project Assignment 7

• Task: Performance measurement on prototyping board
– Run C++ model of Canny Edge Detector on Raspberry Pi

– Obtain absolute timing measurements of Canny functions

• Steps
1. Prepare the prototyping board with Raspbian operating system
2. Upload Canny.cpp from A4 and compile it

3. Instrument the source code with real-time measurements

4. Note the computation delays of the major Canny functions

• Deliverables
– Canny.cpp (model instrumented with timing measurements)

– Canny.txt (table of measured delays)

• Due
– Wednesday, November 22, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 24

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 13

Project Assignment 7

• Discussion: Measured Computation Delays
– Table of measured delays on Raspberry Pi 3 (in Canny.txt):
– Gaussian_Smooth 3.53 s
– Gaussian_Kernel 0.00 s
– BlurX 1.71 s
– BlurY 1.82 s
– Derivative_X_Y 0.48 s
– Magnitude_X_Y 1.03 s
– Non_Max_Supp 0.83 s
– Apply_Hysteresis 0.67 s
– ======
– TOTAL 6.54 seconds

 This performance is far too slow for real-time video!

 Discussion: What options exist to speed this up?

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 25

Project Assignment 7

• Discussion: Measured Computation Delays
– TOTAL 6.54 seconds

 This performance is far too slow for real-time video!

 Discussion: What options exist to speed this up?

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 26

White board photo goes here!

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 14

Project Assignment 8

• Task: Pipelining and parallelization of the DUT module
– Back-annotate estimated delays to observe timing in the model

– Pipeline and parallelize the model to improve throughput

• Steps
1. Instrument model with simulation time to observe frame delay

2. Back-annotate estimated timing in DUT components

3. Pipeline the DUT into a sequence of 7 stages with buffer size 1

4. Slice the BlurX and BlurY modules into parallel threads

• Deliverables
– Canny.cpp (pipelined and parallelized SystemC model)

– Canny.txt (table of observed frame delays)

• Due
– Wednesday, November 29, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 27

Project Assignment 8

• Timed test bench model for the Canny Edge Detector
– Discussion on whiteboard: Chart of refined test bench structure

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 28

White board photo goes here!

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 15

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Discussion on whiteboard: Chart of refined DUT structure

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 29

White board photo goes here!

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Back-annotation of measured timing delays (step 2)

Receive, Make_Kernel 0 ms
BlurX 1710 ms
BlurY 1820 ms
Derivative_X_Y 480 ms
Magnitude_X_Y 1030 ms
Non_Max_Supp 830 ms
Apply_Hysteresis 670 ms

=======
TOTAL: 6540 ms

=======

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 30

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 16

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Discussion on whiteboard: Parallel BlurX, BlurY functions (step 4)

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 31

White board photo goes here!

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Back-annotation of measured timing delays

 4-way parallelization of BlurX and BlurY modules (step 4)

Receive, Make_Kernel 0 ms 0 ms
BlurX 1710 ms 427 ms
BlurY 1820 ms 455 ms
Derivative_X_Y 480 ms 480 ms
Magnitude_X_Y 1030 ms 1030 ms
Non_Max_Supp 830 ms 830 ms
Apply_Hysteresis 670 ms 670 ms

======= =======
TOTAL: 6540 ms 3892 ms

======= =======

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 32

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 17

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Expected execution log with timing (after step 4)

0 s: Stimulus sent frame 1.
0 s: Stimulus sent frame 2.
0 s: Stimulus sent frame 3.

[...]
3422 ms: Stimulus sent frame 16.
3892 ms: Monitor received frame 1 with 3892 ms delay.
4452 ms: Stimulus sent frame 17.
4922 ms: Monitor received frame 2 with 4922 ms delay.
[...]
17282 ms: Monitor received frame 14 with 14720 ms delay.
17842 ms: Stimulus sent frame 30.
18312 ms: Monitor received frame 15 with 15323 ms delay.
19342 ms: Monitor received frame 16 with 15920 ms delay.
[...]
32732 ms: Monitor received frame 29 with 15920 ms delay.
33762 ms: Monitor received frame 30 with 15920 ms delay.
33762 ms: Monitor exits simulation.

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 33

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Timing results observed after each step:

Model Frame Delay Total simulation time
CannyA8_step1 0 ms 0 ms
CannyA8_step2 <varies> <varies>
CannyA8_step3 <varies> 59320 ms
CannyA8_step4 <varies> 33762 ms

– Discussion:
• Model in step 1 is untimed

• Times observed in step 2 may vary due to different communication
channels (passing data over/via an intermediate stage)

• Frame delay in steps 3 and 4 may vary due to different buffer depth of
time stamp channel in test bench

 Frame delay is not a good measure of performance! What is?

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 34

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 18

Project Assignment 8

• Discussion of Performance
• Performance metrics observed in Assignment 8

– Total simulated time
• Total processing time for our stream of 30 frames

– Frame delay
• Processing time for each frame from pipeline input to output
• Influenced by time-stamp channel depth
Not a good measure!

• Performance metrics in Assignment 9
– Stage delay

• Delay incurred in each pipeline stage; maximum matters!

– Pipeline latency
• N*max(StageDelay), where N is the number of stages

 Pipeline throughput
Number of frames coming out of the pipeline per second (FPS)

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 35

Project Assignment 9

• Task: Throughput optimization by pipeline load balancing
– Observe pipeline throughput in the model, measure FPS

– Optimize the bottleneck stages to improve throughput

• Steps
1. Improve test bench to measure and display frame throughput

2. Apply compiler optimizations to reduce execution time

3. Replace floating-point with fixed-point arithmetic in NMS block

• Deliverables
– Canny.cpp (optimized SystemC model)

– Canny.txt (table of observed frame throughput)

• Due
– Wednesday, December 6, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 36

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 19

Project Assignment 9

• Step 1: Improve test bench to measure and
display frame throughput

– Expected log output

[...]

17282 ms: Monitor received frame 14 with 14720 ms delay.

17282 ms: 1.030 seconds after previous frame, 0.971 FPS.

17842 ms: Stimulus sent frame 30.

18312 ms: Monitor received frame 15 with 15323 ms delay.

18312 ms: 1.030 seconds after previous frame, 0.971 FPS.

[...]

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 37

Project Assignment 9

• Step 2: Apply compiler optimizations
to reduce execution time

– Experiment with various compiler options, including:

–O2

–O3

-mfloat-abi=hard

-fmpu=neon-fp-armv8

–mneon-for-64bits

– Refer to documentation on
• GNU compiler

• ARMv8 Cortex-A53

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 38

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2017 R. Doemer 20

Project Assignment 9

• Step 3: Replace floating-point arithmetic
with fixed-point calculations

– Focus on Non_Max_Supp module only

– Convert float type variables to int types

– Replace this code…
xperp = -(gx = *gxptr)/((float)m00);

yperp = (gy = *gyptr)/((float)m00);

– … with this code
gx = *gxptr;

gy = *gyptr;

xperp = -(gx<<16)/m00;

yperp = (gy<<16)/m00

– Measure the timing difference on the prototyping board
– Evaluate the image quality (ImageDiff)

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 39

