ECPS203: Embedded Systems Modeling and Design

ECPS 203
Embedded Systems Modeling and Design
Lecture 19

Rainer Domer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

@D o or éMECPS

3%!?; o CYBER-PHYSICAL UCI University of
SYSTEMS California, Irvine

Lecture 19: Overview

* Course Administration
¢ Final course evaluation

* Project Discussion
— A1: Introduction of Canny Edge Detection application
— A2: Clean C++ model with static memory allocation
— A4: From single image to video stream processing
— Ab5: Test bench model in SystemC
— AG6: Structural DUT module, algorithm profiling
— A7: Performance measurement on prototyping board
— A8: Pipelined and parallel model with back-annotated timing

» Assignment 9

— Throughput optimization by pipeline load balancing
» Discussion

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 2

(c) 2017 R. Doemer

Lecture 19

ECPS203: Embedded Systems Modeling and Design Lecture 19

Course Administration

 Final Course Evaluation
— Open until end of 10t week (Sunday night)
— Nov. 28, 2017, through Dec. 10, 2017, 11pm
— Online via EEE Evaluation application
« Mandatory Evaluation of Course and Instructor
— Voluntary
— Anonymous
— Very valuable
» Please spend 5 minutes for this survey!
— Your feedback is appreciated!

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 3

ECPS 203 Project

» Application Example: Canny Edge Detector

— Embedded system model for image processing:
Automatic edge detection in a digital camera

s S

golfcart.pgm golfcart.pgm_s_0.60_|_0.30_h_0.80.pgm
— Application source and documentation:

 http://marathon.csee.usf.edu/edge/edge_detection.html
 http://en.wikipedia.org/wiki/Canny_edge_detector

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 4

(c) 2017 R. Doemer 2

ECPS203: Embedded Systems Modeling and Design

Project Assignment 1

Task: Introduction to Application Example
— Canny Edge Detector

— Algorithm for edge detection in digital images
» Steps

1. Setup your Linux programming environment

2. Download, adjust, and compile the application C code
with the GNU C compiler (gec)

3. Study the application, determine function-call tree
Deliverables
— Source code and text file: canny.c, canny. txt
* Due

— Wednesday, next week: October 11, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer

-

Project Assignment 2

» Task: Clean C++ model with static memory allocation
— Prepare the C++ source code for modeling in SystemC
— Configure parameters for specific application
— Apply static memory allocation

» Steps
1. Fix the off-by-one bug in the non_max_supp function
2. Clean-up the code for compilation without warnings
3. Fix configuration parameters to compile-time constants
4. Remove or replace dynamic memory allocation

* Deliverables
— Source code and text file: canny.cpp, canny. txt

* Due
— Wednesday, next week: October 18, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 6

(c) 2017 R. Doemer

Lecture 19

ECPS203: Embedded Systems Modeling and Design

ECPS 203 Project

» Application Example: Canny Edge Detector

— Embedded system model for image processing:
Automatic edge detection in a digital video camera

= S HE

Engineering001.bmp Engineering001_edges.pgm
— Process video shot by a drone flying over Engineering Plaza

» Fly a drone over UCI Engineering Plaza, take video of buildings

» Record a color video stream in high resolution, 2704 by 1520 pixels

» Extract a set of video frames suitable for use in our test bench

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 7

ECPS 203 Project: Drone Flight

+ Capture Video Footage of Engineering Buildings
— Google Map of UCI Engineering Quad

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 8

(c) 2017 R. Doemer

Lecture 19

ECPS203: Embedded Systems Modeling and Design

ECPS 203 Project: Drone Flight

« Capture Video Footage of Englneerlng Buildings

— Drone flights in US © oone oe+
require approval = R R L
by the Federal =
Aviation Administration Flight Information Request Approved
(FAA)

— On UCI campus,
Environmental Health

- o

@ & n ¢ % C

afety | Dr

= Manage Fights Wb Clone requent
& Safety (EHS) Flight Request
department is in charge | wmme oo /o
of Unmanned Aircraft i k
Safety e
> Flight request approved | =
* Thursday, i,
October 19, 2017 Fymginder
ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 9

ECPS 203 Project: Drone Flight

+ Capture Video Footage of Engineering Buildings
— Drone Equipment
+ DJI Phantom 3 Standard Quadcopter
+ Remote Control with Mobile Device

~ & —
gy -

[Image source: dji.com]
— Drone carrries a Camera attached to a Gimble
+ Video stream stored on a SD memory card, e.g. DJI_0001.MOV
+ Video is 30 frames per second
* Frames are 2704 by 1520 pixels

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 10

(c) 2017 R. Doemer

Lecture 19

ECPS203: Embedded Systems Modeling and Design

ECPS 203 Project: Drone Flight

» Capture Video Footage of Engineering Buildings
— Screen Shot of Drone Control App on Mobile Device

Ready to Go (GPS) Xp-ops Sl @l @l BA
= o - - -

Auto 5 2.7K/30 19959 p m AL

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 1

ECPS 203 Project: Drone Flight

» Capture Video Footage of Engineering Buildings
— Drone flight demonstration

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 12

(c) 2017 R. Doemer

Lecture 19

ECPS203: Embedded Systems Modeling and Design

ECPS 203 Project: Drone Flight

» Application Example: Canny Edge Detector

— Embedded system model for image processing:
Automatic edge detection in a digital video camera

Engineering012.png Engineering012_edges.pgm
— Video taken by a drone flying over UCI Engineering Plaza

» Available on the server: ~ecps203/public/DroneFootage/

» High resolution, 2704 by 1520 pixes

» Representative sample, using 30 extracted frames for test bench model

T

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 13

Project Assignment 4

» Task: From Single Image to Video Stream Processing
— Prepare a sequence of image frames from the video
— Convert the Canny application to process video frames
» Steps
1. Extract 30 of video frames suitable for use in a test bench
2. Convert the color frames to grey-scale images in PGM format
3. Recode your Canny C++ model to process the video frames
» To run Canny application successfully, increase stack size
* Deliverables
— Source code and text file: Canny.cpp, Canny. txt
* Due
— Wednesday, November 1, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 14

(c) 2017 R. Doemer

Lecture 19

ECPS203: Embedded Systems Modeling and Design

Project Assignment 5

Task: Test Bench for the Canny Edge Detector

— Convert C++ model to SystemC model

— Add a test bench structure around the C++ model

— Wrap DUT into a platform model with dedicated 1/O units
» Steps

1. Create test bench structure: Stimulus, Platform, Monitor

2. Create platform model: Dataln, DUT, DataOut

3. Localize functions and use sc_£ifo channels for communication

» Pay attention to thread stack sizes

Deliverables

— SystemC source code and text file: Canny.cpp, Canny. txt

* Due
— Wednesday, November 8, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 15

-

Project Assignment 5

» Task: Test Bench for the Canny Edge Detector
— Expected instance tree
Top top
| —=—==== Monitor monitor
| —=—==== Platform platform
[| ====== DUT canny
[| =====- DataIn din
[| —=—==== DataOut dout
| |-———-—- sc_fifo<IMAGE> gl
| \=-=——=- sc_fifo<IMAGE> g2
|-—--=--- Stimulus stimulus
|------ sc_fifo<IMAGE> ql
\-————-- sc_fifo<IMAGE> q2

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 16

(c) 2017 R. Doemer

Lecture 19

ECPS203: Embedded Systems Modeling and Design

Project Assignment 5

+ Task: Test Bench for the Canny Edge Detector
— Discussion on whiteboard: Chart of top-level structure

Class IHRGE § .. amy of pind 3

g _f‘g_ n+<’
e-Fifo_out<Iihses /s<_-ﬁ‘{o </MAoE> —

Top &r

Patlon LT D~ (97] S THIFGE &,
VR (REINSE S e el
- T 2 L“ﬂj 1 D Pinolend iy
o (8 ‘);ﬁw.' N “ A) V:J,\,,,)w_‘//fhg\
Pl ed) I
3)

2->wife ()
G/

ECPS203: Embedded Systems Modeling and Design, Lecture 19

(c) 2017 R. Doemer 17

Project Assignment 6

» Task: Structural refinement of the DUT module
— Refine the structural hierarchy of the DUT module
— Refine the structural hierarchy of the Gaussian Smooth module
— Profile the relative complexity of the Canny functions

» Steps
1. Create structure in DUT: Gaussian Smooth, ..., Apply Hysteresis
2. Create structure in Gaussian Smooth: Input, Gauss, BlurX, BlurY
3. Profile the algorithm, obtain relative computational complexity

* Deliverables
- Canny . cpp (refined structural model)
- Canny. txt (profile of relative complexity of the DUT modules)

* Due
— Wednesday, November 15, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 18

(c) 2017 R. Doemer

Lecture 19

ECPS203: Embedded Systems Modeling and Design

Project Assignment 6

+ Step 1: Refined structure of the DUT module
— Expected module instance tree
Platform platform
| ===—-- DatalIn din
| ====== DUT canny
[| =====- Gaussian_Smooth gaussian_smooth
[| =====- Derivative X Y derivative x y
[| =====- Magnitude X Y magnitude x y
[| ===——- Non_Max Supp non_max_supp
| \====== Apply Hysteresis apply hysteresis
\-————- DataOut dout
ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 19

-

Project Assignment 6

» Step 2: Refined structure of the Gaussian Smooth module

— Expected module instance tree

DUT canny

| —=—===—= Gaussian_Smooth gaussian_smooth
| —=—==== Receive_Image receive

| ====== Gaussian_Kernel gauss

| ====== BlurX blurX

\-———-- BlurY blurY

| ====== Derivative X Y derivative x_y
|------ Magnitude X Y magnitude x y

| ====== Non_Max Supp non_max_supp

\-———-- Apply Hysteresis apply hysteresis

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 20

(c) 2017 R. Doemer

Lecture 19

10

ECPS203: Embedded Systems Modeling and Design Lecture 19

Project Assignment 6

+ Structural model of the DUT of the Canny Edge Detector
— Discussion on whiteboard: Chart of refined DUT structure
Scfdo & fl}lﬂé& o STHAGES

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 21

Project Assignment 6

» Step 3: Profile the Canny functions

» Performance profiling of the Canny Edge Detector

» Determine the relative complexity of the Canny functions
* Is there any performance bottleneck?
¢ |f so, Where?

— Use the GNU C/C++ profiling tools
» g++ -pg
» gprof
1. Compile the SystemC source code with option -pg

2. Run the simulation once with instrumentation, obtain gmon. out

3. Run the profiler: gprof Canny

4. Validate the reported call tree

5. Analyze the “flat profile” for the DUT components (self£)
ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 22

(c) 2017 R. Doemer 11

ECPS203: Embedded Systems Modeling and Design

Project Assignment 6

» Step 3: Profile the Canny functions,
obtain relative computational complexity
— Profiled complexity comparison (in Canny . txt):

Gaussian_Smooth 42.64%
[-————- Gaussian Kernel 0%
22.73%
19.91%
6.12%
16.09%
25.16%
9.80%
100%
> Profiling results vary, but Gaussian Smooth is a bottleneck!

Derivative X Y
Magnitude X Y
Non_Max Supp
Apply Hysteresis

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 23

Project Assignment 7

» Task: Performance measurement on prototyping board
— Run C++ model of Canny Edge Detector on Raspberry Pi
— Obtain absolute timing measurements of Canny functions

» Steps
1. Prepare the prototyping board with Raspbian operating system
2. Upload canny . cpp from A4 and compile it
3. Instrument the source code with real-time measurements
4. Note the computation delays of the major Canny functions

* Deliverables
- Canny.cpp (model instrumented with timing measurements)
- Canny. txt (table of measured delays)

* Due
— Wednesday, November 22, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 24

(c) 2017 R. Doemer

Lecture 19

12

ECPS203: Embedded Systems Modeling and Design

Project Assignment 7

» Discussion: Measured Computation Delays

— Table of measured delays on Raspberry Pi 3 (in Canny . txt):

- Gaussian_Smooth 3.53 s
- Gaussian_Kernel 0.00 s

- BlurX 1.71 s

- BlurY 1.82 s

- Derivative X Y 0.48 s

- Magnitude X Y 1.03 s

- Non_Max Supp 0.83 s

- Apply_Hysteresis 0.67 s

- TOTAL 6.54 seconds

» This performance is far too slow for real-time video!
» Discussion: What options exist to speed this up?

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer

25

Project Assignment 7

» Discussion: Measured Computation Delays
- TOTAL 6.54 seconds
> This performance is far too slow for real-time video!
Acsl: 65t s [E59.2)
Goal: 0.0 0.0385< (s0Frs)
= Q{x Streclup treskey >

» Discussion: What options exist to speed this up?
OF'):'a-. | ésfu/ Eowvl & v D[{U‘HD
Z: Jupmet 6411@/0\;:/2 s (am//e((;;w‘{)/@l
STAY HUY cenduetin? bbne? Bl P, T
¥ Decvense Wesolhiod =SAS mutl a5 heednyd
S: Pipeliniss (AT => up to Ix Specsep.

6 Compiln pphushn ©= g¢ec -00' 5” %
 FPUgz O 7 ol

> ‘-{(wnf => fix-pont b/m-//u;,
ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer

26

(c) 2017 R. Doemer

Lecture 19

13

ECPS203: Embedded Systems Modeling and Design

Project Assignment 8

Task: Pipelining and parallelization of the DUT module
— Back-annotate estimated delays to observe timing in the model
— Pipeline and parallelize the model to improve throughput

» Steps

1. Instrument model with simulation time to observe frame delay

2. Back-annotate estimated timing in DUT components

3. Pipeline the DUT into a sequence of 7 stages with buffer size 1

4. Slice the BlurX and BlurY modules into parallel threads

Deliverables

- Canny. cpp (pipelined and parallelized SystemC model)
- Canny. txt (table of observed frame delays)

* Due

— Wednesday, November 29, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 27

Project Assignment 8

* Timed test bench model for the Canny Edge Detector
— Discussion on whiteboard: Chart of refined test bench structure

SC Ay & sc_tine> I
7 < se-tive> [Umm Tg)

?
o tf'i"-é
S fg@m L > 7

'l’:l?:r Frae O 1tte ,'T'o-.af;\
— Pue Odtay= CQ_——-{,)

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 28

(c) 2017 R. Doemer

Lecture 19

14

ECPS203: Embedded Systems Modeling and Design

Project Assignment 8

* Pipelined and parallel model of the Canny Edge Detector
— Discussion on whiteboard: Chart of refined DUT structure

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer

Project Assignment 8

» Pipelined and parallel model of the Canny Edge Detector
— Back-annotation of measured timing delays (step 2)
Receive, Make Kernel 0 ms
BlurX 1710 ms
BlurY 1820 ms
Derivative X Y 480 ms
Magnitude X Y 1030 ms
Non_Max_Supp 830 ms
Apply Hysteresis 670 ms
TOTAL: 6540 ms
ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 30

(c) 2017 R. Doemer

Lecture 19

15

ECPS203: Embedded Systems Modeling and Design

ECPS203: Embedded Systems Modeling and Design, Lecture 19

Project Assignment 8

(c) 2017 R. Doemer

* Pipelined and parallel model of the Canny Edge Detector
— Discussion on whiteboard: Parallel BlurX, BlurY functions (step 4)

31

Project Assignment 8

ECPS203: Embedded Systems Modeling and Design, Lecture 19

(c) 2017 R. Doemer

| o

§ ° Pipelined and parallel model of the Canny Edge Detector

|] . ..

| — Back-annotation of measured timing delays

§ » 4-way parallelization of BlurX and BlurY modules (step 4)

|
Receive, Make Kernel 0 ms 0 ms
BlurX 1710 ms 427 ms
BlurY 1820 ms 455 ms
Derivative X Y 480 ms 480 ms
Magnitude X Y 1030 ms 1030 ms
Non_Max_Supp 830 ms 830 ms
Apply Hysteresis 670 ms 670 ms
TOTAL: 6540 ms 3892 ms

32

(c) 2017 R. Doemer

Lecture 19

16

ECPS203: Embedded Systems Modeling and Design

Project Assignment 8

* Pipelined and parallel model of the Canny Edge Detector

— Expected execution log with timing (after step 4)

0 s:

4452 ms:
4922 ms:
[...]
17282 ms:
17842 ms:
18312 ms:
19342 ms:
[...]
32732 ms:
33762 ms:
33762 ms:

Stimulus sent frame 1.
: Stimulus sent frame 2.
: Stimulus sent frame 3.

: Stimulus sent frame 16.
: Monitor received frame
Stimulus sent frame 17.

Monitor received frame

Monitor received frame

Stimulus sent frame 30.

Monitor received frame
Monitor received frame

Monitor received frame
Monitor received frame

1 with 3892

2 with 4922

14 with 14720

15 with 15323
16 with 15920

29 with 15920
30 with 15920

Monitor exits simulation.

ECPS203: Embedded Systems Modeling and Design, Lecture 19

ms

ms

ms

ms
ms

ms
ms

(c) 2017 R. Doemer

delay.
delay.
delay.

delay.
delay.

delay.
delay.

33

Project Assignment 8

» Pipelined and parallel model of the Canny Edge Detector

— Timing results observed after each step:

Model

CannyA8 stepl
CannyA8 step2
CannyA8 step3
CannyA8 step4

— Discussion:

Frame Delay
0 ms
<varies>
<varies>
<varies>

* Model in step 1 is untimed

» Times observed in step 2 may vary due to different communication

Total simulation time

0 ms
<varies>
59320 ms
33762 ms

channels (passing data over/via an intermediate stage)

» Frame delay in steps 3 and 4 may vary due to different buffer depth of

time stamp channel in test bench
» Frame delay is not a good measure of performance! What is?

ECPS203: Embedded Systems Modeling and Design, Lecture 19

(c) 2017 R. Doemer

34

(c) 2017 R. Doemer

Lecture 19

17

ECPS203: Embedded Systems Modeling and Design

Project Assignment 8

» Discussion of Performance

» Performance metrics observed in Assignment 8
— Total simulated time
» Total processing time for our stream of 30 frames
— Frame delay
» Processing time for each frame from pipeline input to output
* Influenced by time-stamp channel depth
» Not a good measure!
» Performance metrics in Assignment 9
— Stage delay
« Delay incurred in each pipeline stage; maximum matters!
— Pipeline latency
* N*max(StageDelay), where N is the number of stages
» Pipeline throughput
» Number of frames coming out of the pipeline per second (FPS)

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 35

-

Project Assignment 9

» Task: Throughput optimization by pipeline load balancing
— Observe pipeline throughput in the model, measure FPS
— Optimize the bottleneck stages to improve throughput
» Steps
1. Improve test bench to measure and display frame throughput
2. Apply compiler optimizations to reduce execution time
3. Replace floating-point with fixed-point arithmetic in NMS block
* Deliverables
- Canny . cpp (optimized SystemC model)
- Canny. txt (table of observed frame throughput)
* Due
— Wednesday, December 6, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 36

(c) 2017 R. Doemer

Lecture 19

18

ECPS203: Embedded Systems Modeling and Design Lecture 19

Project Assignment 9

+ Step 1: Improve test bench to measure and
display frame throughput

— Expected log output

[...]

17282 ms: Monitor received frame 14 with 14720 ms delay.
17282 ms: 1.030 seconds after previous frame, 0.971 FPS.
17842 ms: Stimulus sent frame 30.

18312 ms: Monitor received frame 15 with 15323 ms delay.
18312 ms: 1.030 seconds after previous frame, 0.971 FPS.

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 37

Project Assignment 9

» Step 2: Apply compiler optimizations
to reduce execution time

— Experiment with various compiler options, including:

-02

-03
-mfloat-abi=hard
-fmpu=neon-fp-armv8
-mneon-for-64bits

— Refer to documentation on
* GNU compiler
*« ARMv8 Cortex-A53

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer 38

(c) 2017 R. Doemer 19

ECPS203: Embedded Systems Modeling and Design

Project Assignment 9

+ Step 3: Replace floating-point arithmetic

with fixed-point calculations
Focus on Non_Max Supp module only
Convert £loat type variables to int types

Replace this code...

xperp = -(gx = *gxptr)/((£float)m00) ;
yperp = (gy = *gyptr)/((float)mo00);
... with this code

gx = *gxptr;
gy = *gyptr;
xperp = -(gx<<16)/m00;

yperp = (gy<<16)/m00
Measure the timing difference on the prototyping board
Evaluate the image quality (ImageDi£ff)

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2017 R. Doemer

39

(c) 2017 R. Doemer

Lecture 19

20

