ECPS203: Embedded Systems Modeling and Design

ECPS 203
Embedded Systems Modeling and Design
Lecture 2

Rainer Domer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

", CENTER FOR “ =.'A
aady. -~ EMBEDDED AND o
™ CYBER-PHYSICAL II University of
Yy O
UCI California, Irvine

¥ SYSTEMS

Lecture 2: Overview

« Embedded System Design
— Complexity challenges
— Abstraction Levels
— Top-down Design Flow
 Abstract Modeling of Embedded Systems
— Models of Computation
— System-Level Description Languages
» Separation of Concerns
— Computation vs. Communication

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 2

(c) 2017 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

Embedded System Design

Cyber-Physical System

Embedded System
in CPS context

Actuators

Embedded
Comnute tem

Sensors

— Software
_S ftwart
— Hardware ‘ -
J
» Design Challenges 4

. System G
— Hardware design gap ystem =ap
— Software design gap N HW Gap
— System design gap V

SW Gap
(c) 2017 R. Doemer 3

ECPS203: Embedded Systems Modeling and Design, Lecture 2

Abstraction Levels

+ Embedded system design faces tremendous
increase in design complexity

Level Number of components

1E0
System
1E1

Algorithm 1E2

1E3
RTL /; 1 EAJ\
1E5
Gate / o \
Transistor / 1ET \
/ A\

Abstraction
Accuracy

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer

(c) 2017 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

Abstraction Levels

+ Embedded system design faces tremendous

increase of design complexity
» Move to higher levels of abstraction!

Level Number of components

1E0

System level

1E1

1E2

/ 1E4

Abstraction
Accuracy

/L -

A\

A\

1E7

ECPS203: Embedded Systems Modeling and Design, Lecture 2

A\

(c) 2017 R. Doemer

Abstraction Levels

= unstructured High abstraction untimed +
—/
Increasing
Structure Implementation Timing
Detail
=T physical layout real time 1
Structure Low abstraction Timing

ECPS203: Embedded Systems Modeling and Design, Lecture 2

(c) 2017 R. Doemer

(c) 2017 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

= requirements

T pure functional

=+ transaction level

= bus functional

Product features

Specification
model
Architecture
model
Communication
model

Top-Down Design Flow

constraints

untimed T

estimated timing A

timing accurate 1

Implementation
=+ RTL/IS P cycle accurate
model
Structure Manufacturing Timing
ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 7
S . Product specification . T
T T requirements 1 constraints - |
R — M
| Capture Alﬁgn
U T |
C N
T 7 pure functional untimed G
U
R
| Architecture refinement
E P
=+ transaction level estimated timing =
v 3
| Communication refinement
= bus functional timing accurate
RTL Hardwal_’e Interfage Soﬁwarle
P synthesis | synthesis | synthesis P
T RTL/IS cycle accurate -
Manufacturing
ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 8

(c) 2017 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

Abstract Modeling

* Model of Computation
— Formal description of a system model
at high abstraction level

> Specification
» Documentation
» Reasoning
» Validation
» Synthesis

* Models for Hardware and Software design

— State-based models of computation
+ from Finite State Machine (FSM)
+ to Program State Machine (PSM)

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 9

Models of Computation

* Finite State Machine (FSM)
— Basic model for describing control
— States and state transitions
s FSM=<S§, 1,0, f, h>
— Two types:
* Mealy-type FSM (input-based)
* Moore-type FSM (state-based)

FSM model

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 10

(c) 2017 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

Models of Computation

* Finite State Machine (FSM)

» Data Flow Graph (DFG)
— Basic model for describing computation
— Directed graph (acyclic)
* Nodes: operations
» Edges: data flow, dependency of operations

er) @) O
004
SR

DFG model

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer

Models of Computation

* Finite State Machine (FSM)
» Data Flow Graph (DFG)

» Finite State Machine with Data (FSMD)

— Combined model for control and computation
*» FSMD =FSM + DFG

— Implementation: controller plus data path (RTL processor)

>

FSMD model

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer

12

(c) 2017 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

Models of Computation

» Finite State Machine (FSM)
» Data Flow Graph (DFG)
* Finite State Machine with Data (FSMD)

» Super-State FSM with Data (SFSMD)

— FSMD with complex, multi-cycle states
» States described by procedures in a programming language

a = 42;
b=a=*2;
for(c=0; c<100; c++)
{b=c+ a;
if (b <0)
b = -b;
else
while (a<100) f|> b=b+1:
{b=D>b+a; a=b * 10;
if (b > 50) }
c=c +d;
SFSMD model
ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 13

Models of Computation

* Finite State Machine (FSM)

» Data Flow Graph (DFG)

» Finite State Machine with Data (FSMD)
» Super-State FSM with Data (SFSMD)

» Hierarchical Concurrent FSM (HCFSM)
— FSM extended with hierarchy and concurrency
* Multiple FSMs composed hierarchically and in parallel
— Example: Statecharts

HCFSM model

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 14

(c) 2017 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

Models of Computation

+ Finite State Machine (FSM)

+ Data Flow Graph (DFG)

+ Finite State Machine with Data (FSMD)
» Super-State FSM with Data (SFSMD)

» Hierarchical Concurrent FSM (HCFSM)

* Program State Machine (PSM)
— HCFSMD plus programming language

« States described by procedures a = 42;
in a programming language Wz'!')e_(gfog?
— Example: SpecC if (b > 50)
c=c+d;
else
PSM model c=c+e;
a = ¢c;
}
ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 15

System-Level Description Languages

» Goals and Requirements
— Formality
* Formal syntax and semantics
— Executability
+ Validation through simulation
— Synthesizability
* Implementation in HW and/or SW
» Support for IP reuse
— Modularity
* Hierarchical composition
» Separation of concepts
— Completeness
» Support for all concepts found in embedded systems
— Orthogonality
» Orthogonal constructs for orthogonal concepts
— Simplicity
* Minimality

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 16

(c) 2017 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

System-Level Description Languages

* Requirements supported by existing languages

A S, [\))
L %,) s,)
o S\ %, % N\ %, \ % RN
* ® % R %s, %y, <o
N\ % %
Behavioral
hierarchy
Structural
hierarchy
Concurrency

Synchronization

Exception
handling

Timing
State
transitions
Composite
data types

00 @O0OOO
Glell VIOl S

@008 0OCO00
000000
020000
00200000
00000000

O
®
®
®
O
®
O
[J
D)

O not supported partially supported . supported

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 17

System-Level Description Languages

* Requirements supported by existing languages

4. S

L, L %, %, s, Ly 6.\0

& N % N2 \ % \ %, \ o, \ %0 \ 2, \ %,

9 %& e,’:’ (&l o
Behavioral
hierarchy
Structural
hierarchy
Concurrency

Synchronization

Exception
handling

Timing

State
transitions

000000
O0ee®®0O0O

©00®0000
eCe00000
20000000
com0eee0”
Cemm=e00 @
e0~00000
00000000
00000000

Composite
data types

O not supported D partially supported . supported

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 18

(c) 2017 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

System-Level Description Languages

« Examples of Languages in Use Today
— C/C++
» ANSI standard programming languages, software design
« Initially used for system design because of availability, practicality
— SystemC
» |EEE standard 1666-2011 (initially created at UCI, standardized by OSCI)
* C++ library and application programming interface (API)
— SpecC
» SLDL with compiler, based on the ANSI C language standard
» Designed and built at UCI, promoted by SpecC Technology Open Consortium
— Matlab
» Algorithm design, specification and simulation in engineering
- UML
» Unified Modeling Language, graphical software specification and engineering
— SystemVerilog
» Verilog with C extensions
- SDL
» Telecommunication standard by ITU, used in COSMOS

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 19

System-Level Description Languages

+ Examples of Languages in Use Today, Course Coverage
— C/C++
» ANSI standard programming languages, software design
« Initially used for system design because of availability, practicality
SystemC
» |EEE standard 1666-2011 (initially created at UCI, standardized by OSCI)
» C++ library and application programming interface (API)
» SpecC (concepts!)
» SLDL with compiler, based on the ANSI C language standard
» Designed and built at UCI, promoted by SpecC Technology Open Consortium
Matlab
» Algorithm design, specification and simulation in engineering
- UML
» Unified Modeling Language, graphical software specification and engineering
SystemVerilog
» Verilog with C extensions
— SDL
» Telecommunication standard by ITU, used in COSMOS

\/

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 20

(c) 2017 R. Doemer

Lecture 2

10

ECPS203: Embedded Systems Modeling and Design

Separation of Concerns

* Fundamental Principle in Modeling of Systems
» Clear separation of concerns
» address separate issues independently
« System-Level Description Language (SLDL)
— Orthogonal concepts
— Orthogonal constructs

+ System-level Modeling

— Computation

» encapsulated in modules / behaviors
— Communication

* encapsulated in channels

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 21

Computation vs. Communication

* Traditional model P1 1 P2

— Processes and signals (_—] =
— VHDL example: entity P1 [.] process [.]

173

war€ until s3”event and s3 = "177]

Xy =X +2*y

B ==1xy;

wart until s3”event and s3 = °1]

sl <= ’07;

L] /4

» Mixture of computation and communication
» Automatic replacement impossible!

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 22

(c) 2017 R. Doemer

Lecture 2

11

ECPS203: Embedded Systems Modeling and Design

Computation vs. Communication

* SpecC model

— Behaviors and

channels

— SpecC example:

B1

L

B2

behavior Bl [..]

channel C1 [..]
{ send (int d)

> Clear separation of computation and communication

» Plug-and-play!

c.send(1); {vl=d;
notify e2;
Xy =X +2 *vy; wait e3;
3
c.send(xy); L1
3

vl = 0;

L]
b5 4 4

(c) 2017 R. Doemer 23

ECPS203: Embedded Systems Modeling and Design, Lecture 2

Computation vs. Communication

* Traditional model

— Processes and signals

-ﬁ—

= =

— Mixture of computation and communication
» Automatic replacement impossible

* SpecC model

B1

-

B2

— Behaviors and channels
— Separation of computation and communication

» Plug-and-play

ECPS203: Embedded Systems Modeling and Design, Lecture 2

(c) 2017 R. Doemer 24

(c) 2017 R. Doemer

Lecture 2

12

ECPS203: Embedded Systems Modeling and Design

Computation vs. Communication

+ System Model
> Specification
> Validation

___IIII___
f —{v2 | s
___IIII___

» Exploration

» Computation in behaviors

* Implementation Model -

« Communication in channels

» Synthesis

* e.g. Verilog, VHDL, -

or SystemC

» Communication protocol is

ECPS203: Embedded Systems Modeling and Design, Lecture 2

.) o\ B2
3
B [va] #

» Channel disappears, signals get exposed

inlined into behaviors

(c) 2017 R. Doemer 25

« Communication Protocol Inlining

Computation vs. Communication

B2

jux)

B1

T

— SystemC example:

SC_MODULE(M1) SC_CHANNEL(C1)
{ L1 { L1
c.send(1); send(int d)
{vl=d;
Xy = X +2 *vy; e2.notify(Q);
wait(el);
c.send(xy); 3}
L[]
vl = 0; 3}
[|
3 7

ECPS203: Embedded Systems Modeling and Design, Lecture 2

SC_MODULE(M1)
{ L1
vl = 1;
e2_notify();

wait(el);
» Xy =X +2*y;
vl = xy;

e2_notify();
wait(el);
vl = 0;

(c) 2017 R. Doemer 26

(c) 2017 R. Doemer

Lecture 2

13

