
ECPS203: Embedded Systems Modeling and Design Lecture 2

(c) 2017 R. Doemer 1

ECPS 203
Embedded Systems Modeling and Design

Lecture 2

Rainer Dömer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 2

Lecture 2: Overview

• Embedded System Design
– Complexity challenges

– Abstraction Levels

– Top-down Design Flow

• Abstract Modeling of Embedded Systems
– Models of Computation

– System-Level Description Languages

• Separation of Concerns
– Computation vs. Communication



ECPS203: Embedded Systems Modeling and Design Lecture 2

(c) 2017 R. Doemer 2

• Embedded System
in CPS context
– Software

– Hardware

• Design Challenges
– Hardware design gap

– Software design gap

– System design gap

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 3

Embedded System Design

Cyber-Physical System

Sensors ActuatorsEmbedded 
Computer System

Hardware

Software

Control

SW Gap

System Gap

HW Gap

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 4

Abstraction Levels

• Embedded system design faces tremendous
increase in design complexity

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of componentsLevel

Gate

RTL

Algorithm

System

Transistor

A
b

st
ra

c
ti

o
n

A
cc

u
ra

c
y



ECPS203: Embedded Systems Modeling and Design Lecture 2

(c) 2017 R. Doemer 3

Level

Gate

RTL

Algorithm

System

Transistor

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 5

System level

Gate

RTL

Algorithm

Transistor

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of components

A
b

st
ra

c
ti

o
n

A
cc

u
ra

c
y

Abstraction Levels

• Embedded system design faces tremendous
increase of design complexity
 Move to higher levels of abstraction!

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 6

Abstraction Levels

TimingLow abstraction

High abstraction

Increasing
Implementation

Detail

Structure

physical layout

unstructured

Structure

real time

untimed

Timing



ECPS203: Embedded Systems Modeling and Design Lecture 2

(c) 2017 R. Doemer 4

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 7

Top-Down Design Flow

Implementation
model

Communication
model

Architecture
model

Specification
model

Manufacturing

Product features

Structure

pure functional

transaction level

bus functional

RTL / IS

requirements

Timing

untimed

estimated timing

timing accurate

cycle accurate

constraints

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 8

Top-Down Design Flow

untimed

estimated timing

timing accurate

cycle accurate

constraints
T
I

M
I
N
Gpure functional

transaction level

bus functional

RTL / IS

requirements
S
T
R
U
C
T
U
R
E

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Comp.
IP

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

RTOS
IP

RTL
IP

Architecture refinement

Capture

Communication model

Product specification

Manufacturing



ECPS203: Embedded Systems Modeling and Design Lecture 2

(c) 2017 R. Doemer 5

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 9

Abstract Modeling

• Model of Computation
– Formal description of a system model

at high abstraction level
 Specification
 Documentation
 Reasoning
 Validation
 Synthesis

• Models for Hardware and Software design
– State-based models of computation

• from Finite State Machine (FSM)
• to Program State Machine (PSM)

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 10

Models of Computation

• Finite State Machine (FSM)
– Basic model for describing control

– States and state transitions
• FSM = <S, I, O, f, h>

– Two types:
• Mealy-type FSM (input-based)

• Moore-type FSM (state-based)

S1 S2

S3

FSM model



ECPS203: Embedded Systems Modeling and Design Lecture 2

(c) 2017 R. Doemer 6

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 11

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)
– Basic model for describing computation

– Directed graph (acyclic)
• Nodes: operations

• Edges: data flow, dependency of operations

Op2 Op3

Op4

Op6

Op1

Op5

DFG model

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 12

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)

• Finite State Machine with Data (FSMD)
– Combined model for control and computation

• FSMD = FSM + DFG

– Implementation: controller plus data path (RTL processor)

FSMD model

S1 S2

S3

Op2 Op3

Op4

Op6

Op1

Op5

Op1 Op2

Op1 Op2

Op3



ECPS203: Embedded Systems Modeling and Design Lecture 2

(c) 2017 R. Doemer 7

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 13

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)

• Finite State Machine with Data (FSMD)

• Super-State FSM with Data (SFSMD)
– FSMD with complex, multi-cycle states

• States described by procedures in a programming language

SFSMD model

PS3

PS1 PS2PS2

PS3

PS1

a = a + b;
c = c + d;

a = 42;
while (a<100)
{ b = b + a;
if (b > 50)

c = c + d;
a = a + c;
}

a = 42;
b = a * 2;
for(c=0; c<100; c++)
{ b = c + a;
if (b < 0)

b = -b;
else

b = b + 1;
a = b * 10;
}

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 14

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)

• Finite State Machine with Data (FSMD)

• Super-State FSM with Data (SFSMD)

• Hierarchical Concurrent FSM (HCFSM)
– FSM extended with hierarchy and concurrency

• Multiple FSMs composed hierarchically and in parallel

– Example: Statecharts

S4

S5

S3

S2

S1

HCFSM model



ECPS203: Embedded Systems Modeling and Design Lecture 2

(c) 2017 R. Doemer 8

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 15

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)

• Finite State Machine with Data (FSMD)

• Super-State FSM with Data (SFSMD)

• Hierarchical Concurrent FSM (HCFSM)

• Program State Machine (PSM)
– HCFSMD plus programming language

• States described by procedures
in a programming language

– Example: SpecC

PS4

PS5

PS3

PS2

PS1

...
a = 42;
while (a<100)
{ b = b + a;
if (b > 50)

c = c + d;
else

c = c + e;
a = c;
}

...

PSM model

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 16

System-Level Description Languages

• Goals and Requirements
– Formality

• Formal syntax and semantics
– Executability

• Validation through simulation
– Synthesizability

• Implementation in HW and/or SW
• Support for IP reuse

– Modularity
• Hierarchical composition
• Separation of concepts

– Completeness
• Support for all concepts found in embedded systems

– Orthogonality
• Orthogonal constructs for orthogonal concepts

– Simplicity
• Minimality



ECPS203: Embedded Systems Modeling and Design Lecture 2

(c) 2017 R. Doemer 9

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 17

System-Level Description Languages

Behavioral
hierarchy
Structural
hierarchy

Concurrency

Synchronization

Exception
handling

Timing

State
transitions
Composite
data types

not supported partially supported supported

• Requirements• Requirements supported by existing languages

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 18

System-Level Description Languages

Behavioral
hierarchy
Structural
hierarchy

Concurrency

Synchronization

Exception
handling

Timing

State
transitions
Composite
data types

not supported partially supported supported

• Requirements• Requirements supported by existing languages



ECPS203: Embedded Systems Modeling and Design Lecture 2

(c) 2017 R. Doemer 10

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 19

System-Level Description Languages

• Examples of Languages in Use Today
– C/C++

• ANSI standard programming languages, software design
• Initially used for system design because of availability, practicality

– SystemC
• IEEE standard 1666-2011 (initially created at UCI, standardized by OSCI)
• C++ library and application programming interface (API)

– SpecC
• SLDL with compiler, based on the ANSI C language standard
• Designed and built at UCI, promoted by SpecC Technology Open Consortium

– Matlab
• Algorithm design, specification and simulation in engineering

– UML
• Unified Modeling Language, graphical software specification and engineering

– SystemVerilog
• Verilog with C extensions

– SDL
• Telecommunication standard by ITU, used in COSMOS

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 20

System-Level Description Languages

• Examples of Languages in Use Today, Course Coverage
– C/C++

• ANSI standard programming languages, software design
• Initially used for system design because of availability, practicality

 SystemC
• IEEE standard 1666-2011 (initially created at UCI, standardized by OSCI)
• C++ library and application programming interface (API)

 SpecC (concepts!)
• SLDL with compiler, based on the ANSI C language standard
• Designed and built at UCI, promoted by SpecC Technology Open Consortium

– Matlab
• Algorithm design, specification and simulation in engineering

– UML
• Unified Modeling Language, graphical software specification and engineering

– SystemVerilog
• Verilog with C extensions

– SDL
• Telecommunication standard by ITU, used in COSMOS



ECPS203: Embedded Systems Modeling and Design Lecture 2

(c) 2017 R. Doemer 11

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 21

Separation of Concerns

• Fundamental Principle in Modeling of Systems
Clear separation of concerns

address separate issues independently

• System-Level Description Language (SLDL)
– Orthogonal concepts

– Orthogonal constructs

• System-level Modeling
– Computation

• encapsulated in modules / behaviors

– Communication
• encapsulated in channels

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 22

Computation vs. Communication

• Traditional model
– Processes and signals

– VHDL example:

 Mixture of computation and communication
 Automatic replacement impossible!

s2

s1

s3

P1 P2

entity P1 […] process […]
s1 <= ’1’;
s2 <= ’1’;
wait until s3’event and s3 = ’1’;
s2 <= ’0’;
xy = x + 2 * y;
s1 <= xy;
s2 <= ’1’;
wait until s3’event and s3 = ’1’;
s1 <= ’0’;
s2 <= ’0’;
[…]



ECPS203: Embedded Systems Modeling and Design Lecture 2

(c) 2017 R. Doemer 12

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 23

Computation vs. Communication

• SpecC model
– Behaviors and

channels

– SpecC example:

 Clear separation of computation and communication
 Plug-and-play!

channel C1 […]
{ send (int d)
{ v1 = d;
notify e2;
wait e3;

}
[…]

}

behavior B1 […]
{
c.send(1);

xy = x + 2 * y;

c.send(xy);

v1 = 0;
[…]

}

B2

e2

v1

e3

B1
C1

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 24

Computation vs. Communication

• Traditional model

– Processes and signals

– Mixture of computation and communication

 Automatic replacement impossible

• SpecC model

– Behaviors and channels

– Separation of computation and communication

 Plug-and-play

s2

s1

s3

P1 P2

B2

v2

v1

v3

B1
C1



ECPS203: Embedded Systems Modeling and Design Lecture 2

(c) 2017 R. Doemer 13

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 25

Computation vs. Communication

• System Model
 Specification

 Validation

 Exploration

• Computation in behaviors

• Communication in channels

• Implementation Model
 Synthesis

• e.g. Verilog, VHDL,
or SystemC

• Channel disappears, signals get exposed

• Communication protocol is inlined into behaviors

B2

v2

v1

v3

B1
C1

B2B1

v2

v1

v3

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2017 R. Doemer 26

Computation vs. Communication

• Communication Protocol Inlining

– SystemC example:

B2

e2

v1

e3

B1
C1

B2B1

e2

v1

e3

SC_MODULE(M1)
{ […]
v1 = 1;
e2.notify();
wait(e3);
xy = x + 2 * y;
v1 = xy;
e2.notify();
wait(e3);
v1 = 0;
[…]}

SC_CHANNEL(C1)
{ […]
send(int d)
{ v1 = d;
e2.notify();
wait(e3);

}
[…]

}

SC_MODULE(M1)
{ […]
c.send(1);

xy = x + 2 * y;

c.send(xy);

v1 = 0;
[…]

}


