
ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 1

ECPS 203
Embedded Systems Modeling and Design

Lecture 20

Rainer Dömer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 2

Lecture 20: Overview

• Course Administration
• Final course evaluation

• Unified Modeling Language (UML)
– Overview

– Example Diagrams

• Project Discussion
– A7: Performance measurement on prototyping board

– A8: Pipelined and parallel model with back-annotated timing

– A9: Throughput optimization by pipeline load balancing

• Final Report
– Final exam

– Grading criteria

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 2

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 3

Course Administration

• Final Course Evaluation
– Open until end of 10th week (Sunday night)

– Nov. 28, 2017, through Dec. 10, 2017, 11pm

– Online via EEE Evaluation application

• Mandatory Evaluation of Course and Instructor
– Voluntary

– Anonymous

– Very valuable

• Please spend 5 minutes for this survey!
– Your feedback is appreciated!

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 4

Unified Modeling Language (UML)

• Goals
– Raising the level of abstraction
– Modeling of software applications

 before coding!
– Specification of software architecture
– Enabling

• scalability
• security
• robustness
• maintenance
• extendability
• code reuse

– Model Driven Architecture (MDA)

• Status
– UML 2.0: Modeling Language in Software Engineering
– standardized by OMG (Object Management Group) in 1997
– standardized by ISO (Intl. Org. for Standardization) in 2005

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 3

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 5

Unified Modeling Language (UML)

• What is UML?
– Graphical representation of …

• Software architecture
• Software structure
• Software behavior
• Object relations
• ...

– 13 standard diagrams
• Specification
• Design
• Documentation

 Not executable!
– Commercial tools available for …

• Graphical capture
• Editing
• Code generation (template code)

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 6

Unified Modeling Language (UML)

• UML Standard Diagrams
– Structure Diagrams

• Class Diagram
• Object Diagram
• Component Diagram
• Composite Structure Diagram
• Package Diagram
• Deployment Diagram

– Behavior Diagrams
• Use Case Diagram
• Activity Diagram
• State Machine Diagram

– Interaction Diagrams
• Sequence Diagram
• Communication Diagram
• Timing Diagram
• Interaction Overview Diagram

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 4

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 7

Unified Modeling Language (UML)

• UML Resources
– Online Documents

• Object Management Group (OMG)
– www.uml.org

– Online Tutorials
– https://www.tutorialspoint.com/uml/

– http://www.sparxsystems.com/uml-tutorial.html

– Invited Talk at UCI in 2004
• Dr. Wolfgang Mueller, C-LAB, Paderborn, Germany

• Source of the following UML diagram examples

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 8

Unified Modeling Language (UML)

• Class Diagram Example

(source:
W. Mueller)

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 5

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 9

Unified Modeling Language (UML)

• Package Diagram Example

(source:
W. Mueller)

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 10

Unified Modeling Language (UML)

(source:
W. Mueller)

• Component Diagram Example

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 6

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 11

Unified Modeling Language (UML)

(source:
W. Mueller)

• Composite Structure Diagram Example

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 12

Unified Modeling Language (UML)

(source:
W. Mueller)

• Deployment Diagram Example

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 7

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 13

Unified Modeling Language (UML)

• Activity Diagram Example

(source:
W. Mueller)

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 14

Unified Modeling Language (UML)

• Activity Diagram Example with “swim lanes”

(source:
W. Mueller)

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 8

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 15

Unified Modeling Language (UML)

(source:
W. Mueller)

• Sequence Diagram Example

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 16

Unified Modeling Language (UML)

• Use Case Diagram Examples

(source:
W. Mueller)

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 9

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 17

Unified Modeling Language (UML)

(source:
W. Mueller)

• State Machine Diagram Examples

Project Assignment 7

• Task: Performance measurement on prototyping board
– Run C++ model of Canny Edge Detector on Raspberry Pi

– Obtain absolute timing measurements of Canny functions

• Steps
1. Prepare the prototyping board with Raspbian operating system
2. Upload Canny.cpp from A4 and compile it

3. Instrument the source code with real-time measurements

4. Note the computation delays of the major Canny functions

• Deliverables
– Canny.cpp (model instrumented with timing measurements)

– Canny.txt (table of measured delays)

• Due
– Wednesday, November 22, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 18

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 10

Project Assignment 7

• Discussion: Measured Computation Delays
– TOTAL 6.54 seconds

 This performance is far too slow for real-time video!

 Discussion: What options exist to speed this up?

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 19

White board photo goes here!

Project Assignment 8

• Task: Pipelining and parallelization of the DUT module
– Back-annotate estimated delays to observe timing in the model

– Pipeline and parallelize the model to improve throughput

• Steps
1. Instrument model with simulation time to observe frame delay

2. Back-annotate estimated timing in DUT components

3. Pipeline the DUT into a sequence of 7 stages with buffer size 1

4. Slice the BlurX and BlurY modules into parallel threads

• Deliverables
– Canny.cpp (pipelined and parallelized SystemC model)

– Canny.txt (table of observed frame delays)

• Due
– Wednesday, November 29, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 20

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 11

Project Assignment 8

• Timed test bench model for the Canny Edge Detector
– Discussion on whiteboard: Chart of refined test bench structure

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 21

White board photo goes here!

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Discussion on whiteboard: Chart of refined DUT structure

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 22

White board photo goes here!

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 12

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Discussion on whiteboard: Parallel BlurX, BlurY functions (step 4)

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 23

White board photo goes here!

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Back-annotation of measured timing delays

 4-way parallelization of BlurX and BlurY modules (step 4)

Receive, Make_Kernel 0 ms 0 ms
BlurX 1710 ms 427 ms
BlurY 1820 ms 455 ms
Derivative_X_Y 480 ms 480 ms
Magnitude_X_Y 1030 ms 1030 ms
Non_Max_Supp 830 ms 830 ms
Apply_Hysteresis 670 ms 670 ms

======= =======
TOTAL: 6540 ms 3892 ms

======= =======

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 24

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 13

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Expected execution log with timing (after step 4)

0 s: Stimulus sent frame 1.
0 s: Stimulus sent frame 2.
0 s: Stimulus sent frame 3.

[...]
3422 ms: Stimulus sent frame 16.
3892 ms: Monitor received frame 1 with 3892 ms delay.
4452 ms: Stimulus sent frame 17.
4922 ms: Monitor received frame 2 with 4922 ms delay.
[...]

17282 ms: Monitor received frame 14 with 14720 ms delay.
17842 ms: Stimulus sent frame 30.
18312 ms: Monitor received frame 15 with 15323 ms delay.
19342 ms: Monitor received frame 16 with 15920 ms delay.
[...]

32732 ms: Monitor received frame 29 with 15920 ms delay.
33762 ms: Monitor received frame 30 with 15920 ms delay.
33762 ms: Monitor exits simulation.

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 25

Project Assignment 8

• Discussion of Performance
• Performance metrics observed in Assignment 8

– Total simulated time
• Total processing time for our stream of 30 frames

– Frame delay
• Processing time for each frame from pipeline input to output
• Influenced by time-stamp channel depth
Not a good measure!

• Performance metrics in Assignment 9
– Stage delay

• Delay incurred in each pipeline stage; maximum matters!

– Pipeline latency
• N*max(StageDelay), where N is the number of stages

 Pipeline throughput
Number of frames coming out of the pipeline per second (FPS)

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 26

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 14

Project Assignment 8

• Discussion of Performance

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 27

Project Assignment 9

• Task: Throughput optimization by pipeline load balancing
– Observe pipeline throughput in the model, measure FPS

– Optimize the bottleneck stages to improve throughput

• Steps
1. Improve test bench to measure and display frame throughput

2. Apply compiler optimizations to reduce execution time

3. Replace floating-point with fixed-point arithmetic in NMS block

• Deliverables
– Canny.cpp (optimized SystemC model)

– Canny.txt (table of observed frame throughput)

• Due
– Wednesday, December 6, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 28

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 15

Project Assignment 9

• Step 1: Improve test bench to measure and
display frame throughput

– Expected log output

[...]

17282 ms: Monitor received frame 14 with 14720 ms delay.

17282 ms: 1.030 seconds after previous frame, 0.971 FPS.

17842 ms: Stimulus sent frame 30.

18312 ms: Monitor received frame 15 with 15323 ms delay.

18312 ms: 1.030 seconds after previous frame, 0.971 FPS.

[...]

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 29

Project Assignment 9

• Step 2: Apply compiler optimizations
to reduce execution time

– Experiment with various compiler options, including:

–O2

–O3

-mfloat-abi=hard

-fmpu=neon-fp-armv8

–mneon-for-64bits

– Refer to documentation on
• GNU compiler

• ARMv8 Cortex-A53

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 30

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 16

Project Assignment 9

• Step 3: Replace floating-point arithmetic
with fixed-point calculations

– Focus on Non_Max_Supp module only

– Convert float type variables to int types

– Replace this code…
xperp = -(gx = *gxptr)/((float)m00);

yperp = (gy = *gyptr)/((float)m00);

– … with this code
gx = *gxptr;

gy = *gyptr;

xperp = -(gx<<16)/m00;

yperp = (gy<<16)/m00

– Measure the timing difference on the prototyping board
– Evaluate the image quality (ImageDiff)

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 31

Project Assignment 9

• Discussion of Throughput Optimization

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 32

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 17

Final Project Report

• Final Report (in lieu of Final Exam)
– Allocated time and room for final exam

• Monday, December 11, 8:00-10:00am (DBH 1420)

Not applicable, we use electronic submission instead!

– Format: Final Project Report
• Submission script: ~ecps203/bin/turnin.sh

• Directory name: final

• Deliverables: ECPS203_Report.pdf
Canny.cpp

– Soft deadline: Draft report (for early feedback)
• Monday, December 11, 2017, 10am

– Hard deadline: Final report (graded!)
• Wednesday, December 13, 2017, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 33

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 34

Final Project Report

• Technical Report about the Course Project
– Title

• Specification and Modeling of a Canny Edge Detector
for Embedded Systems Design

– Contents

• “Story” of the Canny Edge Detector project
– From downloading the initial C reference code

– Via modeling and simulating in SystemC

– To performance optimization for real-time video

• Describe the project assignments 1 through 9

• Focus on the reasoning and the optimization results

– Length
• About 12 pages (including title page, figures, and bibliography)

ECPS203: Embedded Systems Modeling and Design Lecture 20

(c) 2017 R. Doemer 18

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 35

Final Project Report

1. Title page
• Project title, author, date, course number and title
• Abstract

2. Introduction
• Embedded system modeling and design concepts
• The IEEE SystemC language

3. Case Study of a Canny Edge Detector for Real-time Video
• Structure of the Canny edge detection algorithm
• Modeling and simulation in IEEE SystemC
• Model refinement for pipelining and parallelization
• Performance estimation and throughput optimization
• Real-time video performance results

4. Summary and Conclusion
• Lessons learned
• Future work

5. References

ECPS203: Embedded Systems Modeling and Design, Lecture 20 (c) 2017 R. Doemer 36

Final Project Report

• Grading Criteria
A. General report quality

1) Story line and readability

2) Organization and structure

3) Accuracy of results and completeness

4) References and citations

5) Conclusions and lessons learned

B. Focus on engineering and reasoning
• Q1: Why was dynamic memory allocation removed in A2?

• Q2: Why was stack size a problem in A4 and later?

• Q3: Why did we model DataIn and DataOut modules in A5?

• Q4: Why are the timing relations in A7 different from A6?

• Q5: Why did we choose to parallelize Gaussian Smooth in A8?

• Q6: Why does the simulator run-time not improve in A8?

• Q7: How can you achieve real-time video for the end user?

