
EECS22: Advanced C Programming Lecture 14

(c) 2017 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 14

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 14 (c) 2017 R. Doemer 2

Lecture 14: Overview

• Course Administration
– Midterm course evaluation

• Practice
– Programming Problem

EECS22: Advanced C Programming Lecture 14

(c) 2017 R. Doemer 2

EECS22: Advanced C Programming, Lecture 14 (c) 2017 R. Doemer 3

Course Administration

• Midterm Course Evaluation
– This week!

– Wednesday, Oct. 25, 8am – Nov. 1, 8am

– Online via EEE Evaluation application

• Feedback from students to instructors
– Completely voluntary

– Completely anonymous

– Very valuable
• Help to improve this class!

• Mandatory Final Course Evaluation
– expected for week 10 (TBA)

Programming Problem

• Task:
– Write a program than calculates the square root

of a positive number entered by the user

• Instructions:
– Write a main module (file Main.c) that prompts the user

for a value and prints the calculated square root
– Write a square root module (files sqrt.c and sqrt.h)

which implements a function with the signature
double SquareRoot(double)

– Write a corresponding Makefile to compile the program

• Algorithm:
– Use a binary search algorithm to calculate the square root

(see next page)

EECS22: Advanced C Programming, Lecture 14 (c) 2017 R. Doemer 4

EECS22: Advanced C Programming Lecture 14

(c) 2017 R. Doemer 3

Binary Search Algorithm For Square Root

• Square Root Approximation Algorithm:
– Input: positive real number N

– Output: square root of N

– Approximate the square root by use of a range {L, R},
where L ≤ sqrt(N) ≤ R

– Start with the range {0, max(1,N)}

– Calculate the middle of the range M = L + (R-L)/2

– If the square root of N lies in the lower half of the range,
use {L, M} as new range; otherwise use {M, R}

– Repeat the bisection until the range is smaller than 1*10-5

– Output M

• Hint:
– L ≤ sqrt(N) ≤ R  L*L ≤ N ≤ R*R

EECS22: Advanced C Programming, Lecture 14 (c) 2017 R. Doemer 5

Binary Search Algorithm For Square Root

• Example: Makefile

EECS22: Advanced C Programming, Lecture 14 (c) 2017 R. Doemer 6

Makefile:

SquareRoot: sqrt.o Main.o
gcc sqrt.o Main.o -o SquareRoot

sqrt.o: sqrt.c sqrt.h
gcc -c -Wall –ansi –std=c99 sqrt.c -o sqrt.o

Main.o: Main.c sqrt.h
gcc -c -Wall -ansi –std=c99 Main.c -o Main.o

EOF

EECS22: Advanced C Programming Lecture 14

(c) 2017 R. Doemer 4

Binary Search Algorithm For Square Root

• Example: Main.c

EECS22: Advanced C Programming, Lecture 14 (c) 2017 R. Doemer 7

/* Main.c: main program file */

#include <stdio.h>
#include "sqrt.h"

int main(void)
{

double x, s;

do{ printf("Enter a positive value: ");
scanf("%lf", &x);

} while(x < 0.0);
s = SquareRoot(x);

printf("The square root of %g is %g.\n", x, s);
return 0;

} /* end of main */

/* EOF Main.c */

Binary Search Algorithm For Square Root

• Example: sqrt.h

EECS22: Advanced C Programming, Lecture 14 (c) 2017 R. Doemer 8

/* sqrt.h: header file for square root approximation */

#ifndef SQRT_H
#define SQRT_H

double SquareRoot(double n);

#endif /* SQRT_H */

/* EOF sqrt.h */

EECS22: Advanced C Programming Lecture 14

(c) 2017 R. Doemer 5

Binary Search Algorithm For Square Root

• Example: sqrt.c

EECS22: Advanced C Programming, Lecture 14 (c) 2017 R. Doemer 9

/* sqrt.c: square root approximation */

#include <assert.h>
#include "sqrt.h"

double SquareRoot(double n)
{ double l, r, m;

assert(n >= 0.0);
l = 0;
r = (n > 1.0) ? n : 1.0;
do { m = l + (r-l)/2;

if (n < m*m)
{ r = m; }
else
{ l = m; }

} while(r-l < 1e-5);
return m;

}
/* EOF sqrt.c */

