
EECS22: Advanced C Programming Lecture 16

(c) 2017 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 16

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 2

Lecture 16: Overview

• Data Structures
– Review: Memory organization

– Objects in memory

– Pointers

• Dynamic Data Structures
– Dynamic memory allocation

– Example: Student records

EECS22: Advanced C Programming Lecture 16

(c) 2017 R. Doemer 2

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 3

Review: Memory Organization

• Memory Segmentation
– typical (virtual) memory layout

on processor with 4-byte words
and 4 GB of memory

– Stack
• grows and shrinks dynamically (from top)
• contains function call hierarchy
• stores stack frames with local variables

– Heap
• “free” storage
• dynamic allocation by the program

– Data segment
• global (and static) variables

– Program segment (aka. text segment)
• program instructions (binary code)

– Reserved area for operating system

Stack

Reserved
for OS

Program
segment

Data
segment

Heap

0

ffff fffc

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 4

Objects in Memory

• Data in memory is organized as a set of objects
• Every object has ...

– ... a type (e.g. int, double, char[5])
• type is known to the compiler at compile time

– ... a value (e.g. 42, 3.1415, “text”)
• value is used for computation of expressions

– ... a size (number of bytes in the memory)
• in C, the sizeof operator returns the size of a variable or type

– ... a location (address in the memory)
• in C, the “address-of” operator (&) returns the address of an object

• Variables ...
– ... serve as identifiers for objects
– ... are bound to objects
– ... give objects a name

EECS22: Advanced C Programming Lecture 16

(c) 2017 R. Doemer 3

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 5

Objects in Memory

• Example: Variable values, addresses, and sizes
int x = 42;
int y = 13;
char s[] = "Hello World!";

printf("Value of x is %d.\n", x);
printf("Address of x is %p.\n", &x);
printf("Size of x is %u.\n", sizeof(x));
printf("Value of y is %d.\n", y);
printf("Address of y is %p.\n", &y);
printf("Size of y is %u.\n", sizeof(y));
printf("Value of s is %s.\n", s);
printf("Address of s is %p.\n", &s);
printf("Size of s is %u.\n", sizeof(s));
printf("Value of s[1] is %c.\n", s[1]);
printf("Address of s[1] is %p.\n", &s[1]);
printf("Size of s[1] is %u.\n", sizeof(s[1]));

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 6

Stack...

...

Objects in Memory

• Example: Variable values, addresses, and sizes

Value of x is 42.
Address of x is ffbefa4c.
Size of x is 4.
Value of y is 13.
Address of y is ffbefa48.
Size of y is 4.
Value of s is Hello World!.
Address of s is ffbefa38.
Size of s is 13.
Value of s[1] is e.
Address of s[1] is ffbefa39.
Size of s[1] is 1.

int x = 42;
int y = 13;
char s[] = "Hello World!";
...

ffbefa4c 42

ffbefa48 13

ffbefa44

‘H’‘e’‘l’‘l’

ffbefa40

‘o’‘ ’‘W’‘o’ffbefa3c

‘r’‘l’‘d’‘!’

ffbefa38

0

EECS22: Advanced C Programming Lecture 16

(c) 2017 R. Doemer 4

Objects in Memory

• 32-bit architecture (232= 4 GB):

Type Size Alignment
char 1 1

short 2 2

int 4 4

long 4 4

long long 8 4

float 4 4

double 8 4

long double12 4

void* 4 4

• 64-bit architecture (264= 16 EB)
e.g. crystalcove.eecs.uci.edu:

Type Size Alignment
char 1 1

short 2 2

int 4 4

long 8 8

long long 8 8

float 4 4

double 8 8

long double16 16

void* 8 8

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 7

• Example: Size and alignment on Linux servers

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 8

Pointers

• Pointers are variables whose values are addresses
– The “address-of” operator (&) returns a pointer!

• Pointer Definition
– The unary * operator indicates a pointer type in a definition

• Pointer initialization or assignment
– A pointer may be set to the “address-of” another variable

– A pointer may be set to 0 (points to no object)

– A pointer may be set to NULL (points to “NULL” object)

int x = 42; /* regular integer variable */
int *p; /* pointer to an integer */

p = &x; /* p points to x */

p = 0; /* p points to no object */

#include <stdio.h> /* defines NULL as 0 */
p = NULL; /* p points to no object */

EECS22: Advanced C Programming Lecture 16

(c) 2017 R. Doemer 5

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 9

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

0

p

42

x

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 10

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */

p

42

x

EECS22: Advanced C Programming Lecture 16

(c) 2017 R. Doemer 6

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 11

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42

p

42

x

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 12

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);
*p = 2 * *p; /* multiply content of p by 2 */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42
x is 84, content of p is 84

p

84

x

EECS22: Advanced C Programming Lecture 16

(c) 2017 R. Doemer 7

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 13

Pointers

• Pointer Dereferencing
– The -> operator dereferences a pointer to a structure

to the content of a structure member

struct Student
{ int ID;

char Name[40];
char Grade;

};

struct Student Jane =
{1001, “Jane Doe”, ‘A’};

struct Student *p = &Jane;

void PrintStudent(void)
{

printf(“ID: %d\n”, p->ID);
printf(“Name: %s\n”, p->Name);
printf(“Grade: %c\n”, p->Grade);

}

1001
“Jane Doe”

‘A’

Jane

ID

Name

Grade

ID: 1001
Name: Jane Doe
Grade: A

p

Dynamic Data Structures

• Static Data Structures
– E.g. arrays, structures

– Size (and type) known at compile time

– Compiler automatically allocates memory (linker, loader)
• Data segment (global/static variables)

• Stack (local/automatic variables)

• Dynamic Data Structures
– E.g. lists, trees, graphs

– Size (and type) not known until run time

– Programmer manually allocates memory (as needed)
• Heap (dynamic objects)

 Dynamic Memory Allocation!
 Program explicitly allocates and de-allocates memory

 Program explicitly performs memory management functions

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 14

EECS22: Advanced C Programming Lecture 16

(c) 2017 R. Doemer 8

Dynamic Data Structures

• Dynamic Memory Allocation

– malloc()
• Allocates size bytes of memory space on the heap

– Allocated memory space is uninitialized

• Returns a pointer to the memory (address of first byte)
– Return type is void*, meaning “pointer to unknown type”

– Return value is NULL (0) if requested size could not be allocated

– free()
• De-allocates the memory at address p

– Argument p must be a pointer to space allocated by malloc()

• Does nothing if p is NULL

 Advise:
• Always check return value of malloc()!

• Always use malloc() and free() in pairs!

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 15

#include <stdlib.h>

void *malloc(size_t size);

void free(void *p);

Dynamic Memory Allocation

• Example Student Records: Student.h

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 16

/* Student.h: header file for student records */

#ifndef STUDENT_H
#define STUDENT_H

#define SLEN 40

struct Student
{ int ID;

char Name[SLEN+1];
char Grade;

};
typedef struct Student STUDENT;

/* allocate a new student record */
STUDENT *NewStudent(int ID, char *Name, char Grade);

/* delete a student record */
void DeleteStudent(STUDENT *s);

/* print a student record */
void PrintStudent(STUDENT *s);

#endif /* STUDENT_H */

EECS22: Advanced C Programming Lecture 16

(c) 2017 R. Doemer 9

Dynamic Memory Allocation

• Example Student Records: Student.c (part 1/3)

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 17

/* Student.c: maintaining student records */

#include "Student.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>

/* allocate a new student record */
STUDENT *NewStudent(int ID, char *Name, char Grade)
{ STUDENT *s;

s = malloc(sizeof(STUDENT));
if (! s)

{ perror("Out of memory! Aborting...");
exit(10);

} /* fi */
s->ID = ID;
strncpy(s->Name, Name, SLEN);
s->Name[SLEN] = '\0';
s->Grade = Grade;
return s;

} /* end of NewStudent */
...

Dynamic Memory Allocation

• Example Student Records: Student.c (part 2/3)

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 18

...

/* delete a student record */
void DeleteStudent(STUDENT *s)
{

assert(s);
free(s);

} /* end of DeleteStudent */

/* print a student record */
void PrintStudent(STUDENT *s)
{

assert(s);
printf("Student ID: %d\n", s->ID);
printf("Student Name: %s\n", s->Name);
printf("Student Grade: %c\n", s->Grade);

} /* end of PrintStudent */

...

EECS22: Advanced C Programming Lecture 16

(c) 2017 R. Doemer 10

Dynamic Memory Allocation

• Example Student Records: Student.c (part 3/3)

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 19

...
/* test the student record functions */
int main(void)
{ STUDENT *s1 = NULL, *s2 = NULL;

printf("Creating 2 student records...\n");
s1 = NewStudent(1001, "Jane Doe", 'A');
s2 = NewStudent(1002, "John Doe", 'C');

printf("Printing the student records...\n");
PrintStudent(s1);
PrintStudent(s2);

printf("Deleting the student records...\n");
DeleteStudent(s1);
s1 = NULL;
DeleteStudent(s2);
s2 = NULL;

printf("Done.\n");
return 0;

} /* end of main */

/* EOF */

Dynamic Memory Allocation

• Example Student Records: Makefile

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 20

Makefile: Student Records

macro definitions
CC = gcc
DEBUG = -g
#DEBUG = -O2
CFLAGS = -Wall -ansi –std=c99 $(DEBUG) -c
LFLAGS = -Wall $(DEBUG)

dummy targets
all: Student

clean:
rm -f *.o
rm -f Student

compilation rules
Student.o: Student.c Student.h

$(CC) $(CFLAGS) Student.c -o Student.o

Student: Student.o
$(CC) $(LFLAGS) Student.o -o Student

EOF

EECS22: Advanced C Programming Lecture 16

(c) 2017 R. Doemer 11

Dynamic Memory Allocation

• Example Session

EECS22: Advanced C Programming, Lecture 16 (c) 2017 R. Doemer 21

% vi Student.h
% vi Student.c
% vi Makefile
% make
gcc -Wall -ansi –std=c99 -g -c Student.c -o Student.o
gcc -Wall -g Student.o -o Student
% ./Student
Creating 2 student records...
Printing the student records...
Student ID: 1001
Student Name: Jane Doe
Student Grade: A
Student ID: 1002
Student Name: John Doe
Student Grade: C
Deleting the student records...
Done.
%

