
EECS22: Advanced C Programming Lecture 17

(c) 2017 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 17

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 17 (c) 2017 R. Doemer 2

Lecture 17: Overview

• Dynamic Memory Allocation
– Dynamic Memory Errors

– Validating Dynamic Memory Usage
– valgrind



EECS22: Advanced C Programming Lecture 17

(c) 2017 R. Doemer 2

Dynamic Memory Allocation

• Typical Dynamic Memory Usage Errors
– Omitting malloc(): Access to unallocated memory

– Reading uninitialized memory
– Omitting free(): Memory leak

– Freeing memory too early, or multiple times

– …

• Validating Dynamic Memory Usage
– valgrind: A memory error detector (and more)

• Instruments the program at (right before) run-time
• Intercepts and checks calls to malloc() and free()

• Intercepts and checks memory accesses

• Reports any errors to the user (or a log file)

 Use valgrind for testing and debugging!
• There should be 0 errors and 0 bytes leaked!

EECS22: Advanced C Programming, Lecture 17 (c) 2017 R. Doemer 3

Dynamic Memory Allocation

• Example Student Records:  Student.h

EECS22: Advanced C Programming, Lecture 17 (c) 2017 R. Doemer 4

/* Student.h: header file for student records */

#ifndef STUDENT_H
#define STUDENT_H

#define SLEN 40

struct Student
{  int  ID;

char Name[SLEN+1];
char Grade;

};
typedef struct Student STUDENT;

/* allocate a new student record */
STUDENT *NewStudent(int ID, char *Name, char Grade);

/* delete a student record */
void DeleteStudent(STUDENT *s);

/* print a student record */
void PrintStudent(STUDENT *s);

#endif /* STUDENT_H */



EECS22: Advanced C Programming Lecture 17

(c) 2017 R. Doemer 3

Dynamic Memory Allocation

• Example Student Records:  Student.c (part 1/3)

EECS22: Advanced C Programming, Lecture 17 (c) 2017 R. Doemer 5

/* Student.c: maintaining student records */

#include "Student.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>

/* allocate a new student record */
STUDENT *NewStudent(int ID, char *Name, char Grade)
{   STUDENT *s;

s = malloc(sizeof(STUDENT));
if (! s)

{ perror("Out of memory! Aborting...");
exit(10);

} /* fi */
s->ID = ID;
strncpy(s->Name, Name, SLEN);
s->Name[SLEN] = '\0';
s->Grade = Grade;
return s;

} /* end of NewStudent */
...

Dynamic Memory Allocation

• Example Student Records:  Student.c (part 2/3)

EECS22: Advanced C Programming, Lecture 17 (c) 2017 R. Doemer 6

...

/* delete a student record */
void DeleteStudent(STUDENT *s)
{

assert(s);
free(s);

} /* end of DeleteStudent */

/* print a student record */
void PrintStudent(STUDENT *s)
{

assert(s);
printf("Student ID:    %d\n", s->ID);
printf("Student Name:  %s\n", s->Name);
printf("Student Grade: %c\n", s->Grade);

} /* end of PrintStudent */

...



EECS22: Advanced C Programming Lecture 17

(c) 2017 R. Doemer 4

Dynamic Memory Allocation

• Example Student Records:  Student.c (part 3/3)

EECS22: Advanced C Programming, Lecture 17 (c) 2017 R. Doemer 7

...
/* test the student record functions */
int main(void)
{   STUDENT *s1 = NULL, *s2 = NULL;

printf("Creating 2 student records...\n");
s1 = NewStudent(1001, "Jane Doe", 'A');
s2 = NewStudent(1002, "John Doe", 'C');

printf("Printing the student records...\n");
PrintStudent(s1);
PrintStudent(s2);

printf("Deleting the student records...\n");
DeleteStudent(s1);
s1 = NULL;
DeleteStudent(s2);
s2 = NULL;

printf("Done.\n");
return 0;

} /* end of main */

/* EOF */

Dynamic Memory Allocation

• Example Student Records:  Makefile

EECS22: Advanced C Programming, Lecture 17 (c) 2017 R. Doemer 8

# Makefile: Student Records

# macro definitions
CC = gcc
DEBUG = -g
#DEBUG = -O2
CFLAGS = -Wall -ansi –std=c99 $(DEBUG) -c
LFLAGS = -Wall $(DEBUG)

# dummy targets
all: Student

clean:
rm -f *.o
rm -f Student

# compilation rules
Student.o: Student.c Student.h

$(CC) $(CFLAGS) Student.c -o Student.o

Student: Student.o
$(CC) $(LFLAGS) Student.o -o Student

# EOF



EECS22: Advanced C Programming Lecture 17

(c) 2017 R. Doemer 5

Dynamic Memory Allocation

• Example Session

EECS22: Advanced C Programming, Lecture 17 (c) 2017 R. Doemer 9

% vi Student.h
% vi Student.c
% vi Makefile
% make
gcc -Wall -ansi –std=c99 -g -c Student.c -o Student.o
gcc -Wall -g Student.o -o Student
% ./Student
Creating 2 student records...
Printing the student records...
Student ID:    1001
Student Name:  Jane Doe
Student Grade: A
Student ID:    1002
Student Name:  John Doe
Student Grade: C
Deleting the student records...
Done.
%

Dynamic Memory Allocation

• Example Session

EECS22: Advanced C Programming, Lecture 17 (c) 2017 R. Doemer 10

% valgrind ./Student
==23638== Memcheck, a memory error detector
==23638== […]
==23638== Command: Student
Creating 2 student records...
Printing the student records...
Student ID:    1001
Student Name:  Jane Doe
Student Grade: A
Student ID:    1002
Student Name:  John Doe
Student Grade: C
Deleting the student records...
Done.
==23638== HEAP SUMMARY:
==23638==    in use at exit: 0 bytes in 0 blocks
==23638==  total heap usage: 2 allocs, 2 frees, 96 bytes allocated
==23638==
==23638== All heap blocks were freed -- no leaks are possible
==23638== ERROR SUMMARY: 0 errors from 0 contexts […]
%


