
EECS22: Advanced C Programming Lecture 18

(c) 2017 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 18

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 2

Lecture 18: Overview

• Pointer Operations
– Definition, initialization and assignment

– Pointer dereferencing

– Pointer arithmetic
• Increment, decrement

– Pointer comparison

• Pointers and Arrays
– Equivalence!

– Array layout in linear address space

EECS22: Advanced C Programming Lecture 18

(c) 2017 R. Doemer 2

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 3

Pointer Operations

• Pointers are variables whose values are addresses
– The “address-of” operator (&) returns a pointer!

• Pointer Definition
– The unary * operator indicates a pointer type in a definition

• Pointer initialization or assignment
– A pointer may be set to the address of another variable

– A pointer may be set to 0 (points to no object)

– A pointer may be set to NULL (points to “NULL” object)

int x = 42; /* regular integer variable */
int *p; /* pointer to an integer */

p = &x; /* p points to x */

p = 0; /* p points to no object */

#include <stdio.h> /* defines NULL as 0 */
p = NULL; /* p points to no object */

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 4

Pointer Operations

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42

p

42

x

EECS22: Advanced C Programming Lecture 18

(c) 2017 R. Doemer 3

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 5

Pointer Operations

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);
*p = 2 * *p; /* multiply content of p by 2 */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42
x is 84, content of p is 84

p

84

x

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 6

Pointer Operations

• Pointer Dereferencing
– The -> operator dereferences a pointer to a structure

to the named structure member (“member-access” operator)

struct Student
{ int ID;

char Name[40];
char Grade;

};

struct Student Jane =
{1001, “Jane Doe”, ‘A’};

struct Student *p = &Jane;

void PrintStudent(void)
{

printf(“ID: %d\n”, p->ID);
printf(“Name: %s\n”, p->Name);
printf(“Grade: %c\n”, p->Grade);

}

1001
“Jane Doe”

‘A’

Jane

ID

Name

Grade

ID: 1001
Name: Jane Doe
Grade: A

p

EECS22: Advanced C Programming Lecture 18

(c) 2017 R. Doemer 4

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 7

Pointer Operations

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element
 Boundaries apply! Pointing outside of A[0] to A[N] is undefined!

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */

20,

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 8

20,

Pointer Operations

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element
 Boundaries apply! Pointing outside of A[0] to A[N] is undefined!

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */

20, 30,

EECS22: Advanced C Programming Lecture 18

(c) 2017 R. Doemer 5

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 9

20, 30,

Pointer Operations

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element
 Boundaries apply! Pointing outside of A[0] to A[N] is undefined!

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */
p--; /* decrement p by 1 */
printf(“%d, ”, *p); /* print content of p */

20, 30, 20,

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 10

20, 30, 20,

Pointer Operations

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element
 Boundaries apply! Pointing outside of A[0] to A[N] is undefined!

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */
p--; /* decrement p by 1 */
printf(“%d, ”, *p); /* print content of p */
p += 2; /* increment p by 2 */
printf(“%d, ”, *p); /* print content of p */

20, 30, 20, 40,

EECS22: Advanced C Programming Lecture 18

(c) 2017 R. Doemer 6

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 11

Pointer Operations

• Pointer Comparison
– Pointers may be compared for object identification or position

• operators == and != are useful to determine object identity

• operators <, <=, >=, and > are applicable
only to objects in the same array

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2; /* pointers to integer */

p1 = &x[1]; p2 = &x[3]; /* point to x[1], x[3] */

if (p1 == p2)
{ printf(“p1 and p2 are identical!\n”);
}

if (*p1 == *p2)
{ printf(“Contents of p1 and p2 are the same!\n”);
}

Contents of p1 and p2 are the same!

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 12

Pointer Operations

• Pointer Comparison
– Pointers may be compared for object identification or position

• operators == and != are useful to determine object identity

• operators <, <=, >=, and > are applicable
only to objects in the same array

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2; /* pointers to integer */

p1 = &x[1]; p2 = &x[3]; /* point to x[1], x[3] */
p1 += 2; /* increment p1 by 2 */
if (p1 == p2)
{ printf(“p1 and p2 are identical!\n”);
}

if (*p1 == *p2)
{ printf(“Contents of p1 and p2 are the same!\n”);
}

p1 and p2 are identical!
Contents of p1 and p2 are the same!

EECS22: Advanced C Programming Lecture 18

(c) 2017 R. Doemer 7

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 13

Pointer Operations

• Pointer Comparison
– Pointers may be compared for object identification or position

• operators == and != are useful to determine object identity

• operators <, <=, >=, and > are applicable
only to objects in the same array

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2; /* pointers to integer */

p1 = &x[1]; p2 = &x[3]; /* point to x[1], x[3] */

if (p1 > p2)
{ printf(“p1 points to an element after p2!\n”);
}

if (p1 < p2)
{ printf(“p1 points to an element before p2!\n”);
}

p1 points to an element before p2!

Pointers and Arrays

• In C, Pointers and Arrays are equivalent!
– A pointer represents an address in memory

– An array is represented by the address of its first element
in memory

• Passing Arrays and Pointers to Functions
– Arrays are passed by reference

– Pointers are references and passed as such

• Array Access is equivalent to Pointer Dereferencing
– Example:

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 14

int A[10];
...
A[0] = 42;
...
A[5] = 17;

int A[10], *p = &A[0];
...
*p = 42;
...
*(p+5) = 17;

EECS22: Advanced C Programming Lecture 18

(c) 2017 R. Doemer 8

Pointers and Arrays

• Dynamic Arrays
– Example 1:

Fixed 1-dim. array
• Fixed definition

• Passed as fixed array

• Fixed array access

Fixed size everywhere!

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 15

int Sum(int A[100])
{
int i, sum = 0;
for(i=0; i<100; i++)
{ sum += A[i];
}
return sum;

}

int main(void)
{
int d[100], s;
...
s = Sum(d);
...
return 0;

}

Pointers and Arrays

• Dynamic Arrays
– Example 2:

Fixed 1-dim. array
• Fixed definition

• Passed as fixed array
plus size

Received as pointer
and size!

Accessed via pointer
with offset!

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 16

int Sum(int *p, int m)
{
int i, sum = 0;
for(i=0; i<m; i++)
{ sum += *(p + i);
}
return sum;

}

int main(void)
{
int d[100], s;
...
s = Sum(d, 100);
...
return 0;

}

EECS22: Advanced C Programming Lecture 18

(c) 2017 R. Doemer 9

Pointers and Arrays

• Dynamic Arrays
– Example 3:

Dynamic 1-dim. array
Dynamic allocation

Passed as pointer
plus size

Received as pointer
and size!

Accessed via pointer
with offset!

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 17

int Sum(int *p, int m)
{
int i, sum = 0;
for(i=0; i<m; i++)
{ sum += *(p + i);
}
return sum;

}

int main(void)
{
int *d, s;
d = malloc(sizeof(int)*100);
if (!d)

{ exit(10); }
...
s = Sum(d, 100);
free(d);
...
return 0;

}

Pointers and Arrays

• Dynamic Arrays
– Example 4:

Fixed 2-dim. array
• Fixed definition

• Passed as fixed array

• Fixed array access

Fixed sizes everywhere!

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 18

int Sum(int A[5][20])
{
int i, j, sum = 0;
for(i=0; i<5; i++)
for(j=0; j<20; j++)
{ sum += A[i][j];
}

return sum;
}

int main(void)
{
int d[5][20], s;
...
s = Sum(d);
...
return 0;

}

EECS22: Advanced C Programming Lecture 18

(c) 2017 R. Doemer 10

Pointers and Arrays

• Dynamic Arrays
– Example 5:

Mixed 2-dim. array
• Fixed definition

of dimension 1 (columns)

• Dynamic allocation
of dimension 2 (rows)

Passed as array with
dynamic dimension 2
(number of rows)
and sizes

Fixed array access

Multi-dimensional arrays
are arrays of arrays…

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 19

int Sum(int A[][20], int m,int n)
{
int i, j, sum = 0;
for(i=0; i<m; i++)
for(j=0; j<n; j++)
{ sum += A[i][j];
}

return sum;
}

int main(void)
{
int (*d)[20], s;
d = malloc(sizeof(int[20])*5);
if (!d)

{ exit(10); }
...
s = Sum(d, 5, 20);
free(d);
...
return 0;

}

Pointers and Arrays

• Dynamic Arrays
– Example 6:

Dynamic 2-dim. array
Dynamic allocation

of all dimensions

Passed as pointer

Received as pointer!

Accessed via pointer!

An array…
of any dimension

of any size

…can be mapped into
linear address space!

EECS22: Advanced C Programming, Lecture 18 (c) 2017 R. Doemer 20

int Sum(int *p, int m, int n)
{
int i, j, sum = 0;
for(i=0; i<m; i++)
for(j=0; j<n; j++)
{ sum += *(p + i*n + j);
}

return sum;
}

int main(void)
{
int *d, s;
d = malloc(sizeof(int)*5*20);
if (!d)

{ exit(10); }
...
s = Sum(d, 5, 20);
free(d);
...
return 0;

}

