
EECS22: Advanced C Programming Lecture 24

(c) 2017 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 24

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 24 (c) 2017 R. Doemer 2

Lecture 24: Overview

• Course Administration
– Reminder: Final course evaluation

• Functions
– Passing Data To/From Functions

– Variable Argument Lists



EECS22: Advanced C Programming Lecture 24

(c) 2017 R. Doemer 2

EECS22: Advanced C Programming, Lecture 24 (c) 2017 R. Doemer 3

Course Administration

• Final Course Evaluation
– Open until end of 10th week (Sunday night)

– Nov. 22, 2017, through Dec. 10, 2017, 11:45pm

– Online via EEE Evaluation application

• Mandatory Evaluation of Course and Instructor
– Voluntary

– Anonymous

– Very valuable

• Please spend 5 minutes for this survey!
– Your feedback is appreciated!

EECS22: Advanced C Programming, Lecture 24 (c) 2017 R. Doemer 4

Passing Data To/From Functions

• Passing Arguments to Functions
– Options:

• Pass by value

• Pass by reference

• Via global variable

• Returning Results from Functions
– Options:

• Via return statement

• Via pointer arguments (“store at address-of”)

• Via global variable

• Considerations
– Type of data (affects pass by value/reference)

– Amount of data (affects performance)
– Packaging in structures (struct)



EECS22: Advanced C Programming Lecture 24

(c) 2017 R. Doemer 3

EECS22: Advanced C Programming, Lecture 24 (c) 2017 R. Doemer 5

Passing Data To/From Functions

• Passing Arguments to Functions
– Pass by value

• only the current value is passed as argument
• the parameter is a copy of the argument
• changes to the parameter do not affect the argument

– Pass by reference
• a reference to the object is passed as argument
• the parameter is a reference to the argument
• changes to the parameter do affect the argument

 In ANSI C, ...
• ... basic types and structures are passed by value
• ... arrays are passed by reference
• ... pointers can pass any object “by reference”

– Via global variable
• Almost always a bad idea!

Passing Data To/From Functions

• Passing Results back to the Caller
– Via return statement

• Breaks the control flow and immediately exits the function

• Passes a single object to the caller

• Passes by value
– Can be seen as an assignment of the given value to a result variable 

(whose type is the return type of the function)

– Type conversion rules apply as for assignment
– Cannot return an array!

– Via pointer arguments (“store at address-of”)
• Manual implementation of “pass by reference”
• Requires explicit handling of assignments
• Can pass multiple objects

– Via global variable
• Almost always a bad idea!

EECS22: Advanced C Programming, Lecture 24 (c) 2017 R. Doemer 6



EECS22: Advanced C Programming Lecture 24

(c) 2017 R. Doemer 4

Passing Data To/From Functions

• Passing Results back to the Caller
– Advise: Avoid returning pointers to local variables!
 Never return a pointer to an auto variable!

• The variable lifetime ends with the return from the function!

• Any access to that pointer by the caller is undefined!

– Example:

EECS22: Advanced C Programming, Lecture 24 (c) 2017 R. Doemer 7

char *Date(int m, int d, int y)
{ char Buffer[100];
sprintf(Buffer, "%2d/%2d/%2d", m,d,y);
return Buffer;

}
...
printf("Today is %s.", Date(12,4,17));

Today is #@#$%@#$@!...

Passing Data To/From Functions

• Passing Results back to the Caller
– Advise: Avoid returning pointers to local variables!
 Avoid returning a pointer to a static variable!

• Variable lifetime is from program start to end,
but only a single value can be used at any time!

– Example:

EECS22: Advanced C Programming, Lecture 24 (c) 2017 R. Doemer 8

char *Date(int m, int d, int y)
{ static char Buffer[100];
sprintf(Buffer, "%2d/%2d/%2d", m,d,y);
return Buffer;

}
...
printf("Today is %s.", Date(12,4,17));

Today is 12/04/17.



EECS22: Advanced C Programming Lecture 24

(c) 2017 R. Doemer 5

• Passing Results back to the Caller
– Advise: Avoid returning pointers to local variables!
 Avoid returning a pointer to a static variable!

• Variable lifetime is from program start to end,
but only a single value can be used at any time!

• The value may be overwritten before it is used!

– Example:
char *Date(int m, int d, int y)
{ static char Buffer[100];
sprintf(Buffer, "%2d/%2d/%2d", m,d,y);
return Buffer;

}
...
printf("Today is %s, tomorrow is %s!",

Date(12,4,17), Date(12,5,17));

Passing Data To/From Functions

EECS22: Advanced C Programming, Lecture 24 (c) 2017 R. Doemer 9

Today is 12/05/17, tomorrow is 12/05/17!

Variable Argument Lists

• Functions can take a variable number of arguments
– Example: int printf(char *fmt, ...);
– Note: The ellipsis notation ...

• indicates a variable number of arguments are following
• is a valid token of the C language
• can be used only at the end of an argument list

– Header file stdarg.h provides
• Type va_list

– Type of a pointer to an argument (e.g. ap)

• Macro va_start(va_list ap, last_arg)
– Initializes ap to point to the first variable argument after last_arg

• Macro va_arg(va_list ap, type)
– Returns the value (of type type) of the next variable argument

• Macro va_end(va_list ap)
– Must be called once after all arguments are processed

but before the function returns

EECS22: Advanced C Programming, Lecture 24 (c) 2017 R. Doemer 10



EECS22: Advanced C Programming Lecture 24

(c) 2017 R. Doemer 6

Variable Argument Lists

• Functions can take a variable number of arguments
– Example:

EECS22: Advanced C Programming, Lecture 24 (c) 2017 R. Doemer 11

#include <stdarg.h>

int SumN(int N, ...)
{
va_list ap;
int i, a, s = 0;

va_start(ap, N);
for(i=0; i<N; i++)
{
a = va_arg(ap, int);
s += a;

}
va_end(ap);
return s;

}

int main(void)
{
int s1, s2;

s1 = SumN(3, 1,2,3);
s2 = SumN(10,

1,2,3,4,5,
6,7,8,9,10);

return SumN(2, s1, s2);
}


