
EECS22: Advanced C Programming Lecture 3

(c) 2017 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 3

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 2

Lecture 3: Overview

• Review of the C Programming Language
– Operators and Expressions

• Arithmetic, Increment, Decrement, Assignment

• Relational, Logical, Bitwise, Shift, Conditional

• Others

– Operator Precedence and Associativity

EECS22: Advanced C Programming Lecture 3

(c) 2017 R. Doemer 2

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 3

Operators in C

• Arithmetic Operators

• Increment and Decrement Operators

• Assignment Operator

• Augmented Assignment Operators

• Relational Operators

• Logical Operators

• Bitwise Operators

• Shift Operators

• Conditional Operator

• Other Operators

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 4

Arithmetic Operators

• Arithmetic Operators
– parentheses (,)

– unary plus, minus +, -

– multiplication, division, modulo *, /, %

– addition, subtraction +, -

• Evaluation order of expressions
– binary operators evaluate left to right

– unary operators evaluate right to left

– by operator precedence
• ordered as in table above (higher operators are evaluated first)

• Arithmetic operators are available
– for integer types: all
– for floating point types: all except %

EECS22: Advanced C Programming Lecture 3

(c) 2017 R. Doemer 3

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 5

Increment and Decrement Operators

• Counting in steps of one
– increment (add 1)
– decrement (subtract 1)

• C provides special counting operators
– increment operator: ++

• count++ post-increment (count = count + 1)
• ++count pre-increment (count = count + 1)

– decrement operator: --
• count-- post-decrement (count = count - 1)
• --count pre-decrement (count = count - 1)

– Note: Argument must be an integral lvalue!
• Lvalue: an expression referring to an object (i.e. variable name)
• An lvalue can be used as the left argument for an assignment!

Increment and Decrement Operators

• Difference between Pre- and Post- Operators
– pre- increment/decrement

• value returned is the incremented/decremented (new) value

– post- increment/decrement
• value returned is the original (old) value

– Examples:
• int n = 5;

• int x = 0;

• x = n++;

 x = 5

 n = 6

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 6

• int n = 5;

• int x = 0;

• x = ++n;

 x = 6

 n = 6

EECS22: Advanced C Programming Lecture 3

(c) 2017 R. Doemer 4

Assignment Operator

• Assignment operator: =
– evaluates right-hand argument

– assigns result to left-hand argument
Evaluation order: right-to-left!

– Left-hand argument must be a lvalue

– Result is the new value of left-hand argument

• Example:
– int a, b, c;

– int d = 5; /* initialization,
not an assignment */

– a = 42; /* assignment */

– b = c = 0; /* same as c = 0; b = c; */

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 7

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 8

Augmented Assignment Operators

• Augmented assignment operators: +=, *=, ...
– evaluates right-hand side as temporary result

– applies operation to left-hand side and temporary result

– assigns result of operation to left-hand side

Evaluation order: right-to-left!

– Left-hand argument must be a lvalue

• Example: Counter
– int c = 0; /* counter starting from 0 */

– c = c + 1; /* counting by regular assignment */

– c += 1; /* counting by augmented assignment */

• Augmented assignment operators:
– +=, -=, *=, /=, %=, <<=, >>=, |=, ^=, &=

EECS22: Advanced C Programming Lecture 3

(c) 2017 R. Doemer 5

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 9

Relational Operators

• Comparison of values
– < less than

– > greater than

– <= less than or equal to

– >= greater than or equal to

– == equal to (remember, = means assignment!)

– != not equal to

• Relational operators are defined for all basic types
– integer (e.g. 5 < 6)

– floating point (e.g. 7.0 < 7e1)

• Result type is Boolean, but represented as integer
– false 0

– true 1 (or any other value not equal to zero)

C99 standard introduces type _Bool
and <stdbool.h> which defines
the macros bool, true, false

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 10

Logical Operators

• Operation on Boolean (truth) values
– ! “not” logical negation

– && “and” logical and

– || “or” logical or

• Truth table:

• Argument and result types are Boolean,
but represented as integer
– false 0

– true 1 (or any other value not equal to zero)

x y !x x && y x || y

0 0 1 0 0

0 1 1 0 1

1 0 0 0 1

1 1 0 1 1

EECS22: Advanced C Programming Lecture 3

(c) 2017 R. Doemer 6

Logical Operators

• Lazy evaluation for logical and and logical or
– Evaluation order left-to-right

– Logical and has higher priority than logical or

– Expression evaluation stops as soon as the result is known
• Logical and evaluates right-hand argument only if left-hand is true (1)

• Logical or evaluates right-hand argument only if left-hand is false (0)

– Example:
• v = f() && g() || h();

• Function f() is called first

• Function g() is called only if f() returned 1

• Function h() is called only if result of f()&&g() returned 0

– Exercise:
• Is it possible that only f() and h() are called?

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 11

Bitwise Operators

• Operators for bit manipulation
– & bitwise “and” 0xFF & 0xF0 = 0xF0

– | bitwise inclusive “or” 0xFF | 0xF0 = 0xFF

– ^ bitwise exclusive “or” 0xFF ^ 0xF0 = 0x0F

– ~ bitwise negation ~0xF0 = 0x0F
(one’s complement)

– << left shift 0x0F << 4 = 0xF0

– >> right shift 0xF0 >> 4 = 0x0F

 Bitwise operators are only available for integral types

• Typical usage
– Mask out some bits from a value

• c = c & 0x0F extracts lowest 4 bits from char c

– Set a set of bits in a value
• c = c | 0x0F sets lowest 4 bits of char c

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 12

EECS22: Advanced C Programming Lecture 3

(c) 2017 R. Doemer 7

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 13

Shift Operators

• Left-shift operator: x << n
– shifts x in binary representation n times to the left
 multiplies x n times by 2
– Examples

• 2x = x << 1
• 4x = x << 2
• x * 2n = x << n
• 2n = 1 << n

• Right-shift operator: x >> n
– shifts x in binary representation n times to the right
 divides x n times by 2
– Examples

• x / 2 = x >> 1
• x / 4 = x >> 2
• x / 2n = x >> n

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 14

Conditional Operator

• Conditional evaluation of values in expressions

• Question-mark operator:
test ? true-value : false-value
– evaluates the test

– if test is true, then the result is true-value

– otherwise, the result is false-value

• Examples:
– (4 < 5) ? (42) : (4+8) evaluates to 42

– (2==1+2) ? (x) : (y) evaluates to y

– (x < 0) ? (-x) : (x) evaluates to abs(x)

• Note: Exactly one of the two cases is evaluated
– Example: Test() ? f() : g();

If Test() returns true, f() is called, otherwise g()

EECS22: Advanced C Programming Lecture 3

(c) 2017 R. Doemer 8

Other Operators

• Comma operator: expr1, expr2
– Left-to-right evaluation, result is result of right operand

• Array access operator: expr1[expr2]
 Detailed discussion in Lecture 5

• Type casting: (typename) expr
 Detailed discussion in Lecture 6

• Function call: expr1(expr2)
 Detailed discussion in Lecture 7

• Member access: expr1.expr2,
expr1->expr2

 Detailed discussion in Lecture 15

• Pointer operators: &expr, *expr
 Detailed discussion in Lectures 16 and later

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 15

EECS22: Advanced C Programming, Lecture 3 (c) 2017 R. Doemer 16

Operator Precedence and Associativity

– parenthesis, array/member acc.(), [], ., -> left to right
– unary operators, pointer op., !, ~, ++, --, +, -, *, &, right to left

size of, type cast sizeof, (typename)
– multiplication, division, modulo *, /, % left to right
– addition, subtraction +, - left to right
– shift left, shift right <<, >> left to right
– relational operators <, <=, >=, > left to right
– equality ==, != left to right
– bitwise and & left to right
– bitwise exclusive or ^ left to right
– bitwise inclusive or | left to right
– logical and && left to right
– logical or || left to right
– conditional operator ?: left to right
– assignment operators =, +=, -=, *=, /=, … right to left
– comma operator , left to right

