
EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 4

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 2

Lecture 4: Overview

• Review of the C Programming Language
– Control Flow Charts

– Structured Programming
• Sequential statements

• Conditional statements

• Repetition statements

• Arbitrary jump statements

– Structured Program Composition
– Example Average.c

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 2

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 3

Structured Programming

• Control Flow Statements
– Sequential execution

• Compound statements

– Conditional execution
• if statement

• if–else statement

• switch statement

– Iterative execution
• while loop
• do–while loop
• for loop

– Unstructured execution
• goto statement

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 4

Structured Programming

• Control Flow Chart
– Graphical representation of program control flow

– Example:

Loop

Start

Input

Done?

Compute

Output

Finish

Sequential Execution

Selection

Termination

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 3

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 5

Structured Programming

• Empty Statement Blocks
– empty compound statement

– does nothing (no operation, no-op)

– Example: Flow chart:

{

/* nothing */

}

do nothing

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 6

Structured Programming

• Compound Statement Blocks
– Sequence of statements grouped by braces: { }
 Sequential execution of a sequence of statements

• Example: Flow chart:

{
/* statement 1 */

/* statement 2 */

/* statement 3 */

/* ... */

/* statement n */
}

Statement 1

Statement 2

Statement 3

Statement n

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 4

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 7

Structured Programming

• Compound Statement Blocks
– Sequence of statements grouped by braces: { }
 Compound statements may have local variables!

• Example: Flow chart:

{ /* declarations */
/* definitions */

/* statement 1 */
/* statement 2 */
/* statement 3 */

/* ... */

/* statement n */
}

Statement 1

Statement 2

Statement 3

Statement n

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 8

Structured Programming

• Compound Statement Blocks
– Sequence of statements grouped by braces: { }

 Indentation increases readability of the code
– proper indentation is highly recommended!

• Example:
/* some statements... */
if (x < 0) {

printf(“%d is negative!”, x);
/* handle negative values of x... */
if (x < -100) {

printf(“%d is too small!”, x);
/* handle the problem... */
} /* fi */

} /* fi */
if (x > 0) {

printf(“%d is positive!”, x);
/* handle positive values of x... */
} /* fi */

/* more statements... */

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 5

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 9

Structured Programming

• Compound Statement Blocks
– Sequence of statements grouped by braces: { }

 Indentation increases readability of the code
– proper indentation is highly recommended!

• Example:
/* some statements... */
if (x < 0) {

printf(“%d is negative!”, x);
/* handle negative values of x... */
if (x < -100) {

printf(“%d is too small!”, x);
/* handle the problem... */
} /* fi */

} /* fi */
if (x > 0) {

printf(“%d is positive!”, x);
/* handle positive values of x... */
} /* fi */

/* more statements... */

indentation level 1

indentation level 0

indentation level 2

indentation level 1
indentation level 0

indentation level 0

indentation level 1

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 10

Structured Programming

• Compound Statement Blocks
– Sequence of statements grouped by braces: { }

 Avoid single statements!
– Wrapping in braces is highly recommended!
– Indentation can be misleading! (C is not Python!)

• Example:
/* some statements... */
if (x < 0)

printf(“%d is negative!”, x);

if (x > 0)
printf(“%d is positive!”, x);

/* more statements... */

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 6

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 11

Structured Programming

• Compound Statement Blocks
– Sequence of statements grouped by braces: { }

 Avoid single statements!
– Wrapping in braces is highly recommended!
– Indentation can be misleading! (C is not Python!)

• Example:
/* some statements... */
if (x < 0)

printf(“%d is negative!”, x);
y = sqrt(-x); /* ERROR! */

if (x > 0)
printf(“%d is positive!”, x);
y = sqrt(x); /* ERROR! */

/* more statements... */

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 12

Structured Programming

• Compound Statement Blocks
– Sequence of statements grouped by braces: { }

 Avoid single statements!
– Wrapping in braces is highly recommended!
– Indentation can be misleading! (C is not Python!)

• Example:
/* some statements... */
if (x < 0) {

printf(“%d is negative!”, x);
y = sqrt(-x);
} /* fi */

if (x > 0) {
printf(“%d is positive!”, x);
y = sqrt(x);
} /* fi */

/* more statements... */

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 7

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 13

Structured Programming

• Selection: if statement
– Flow chart:

– Example:

Condition? Body
true

false

if (grade >= 60)

{ printf(“You passed.”);

} /* fi */

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 14

Structured Programming

• Selection: if-else statement
– Flow chart:

– Example:

if (grade >= 60)
{ printf(“You passed.”);
} /* fi */

else
{ printf(“You failed.”);
} /* esle */

Condition? If - body
true

false

Else - body

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 8

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 15

Structured Programming

• Selection: switch statement
– Flow chart: Example:

switch(LetterGrade)
{ case ‘A’:

{ printf(“Excellent!”);
break; }

case ‘B’:
case ‘C’:
case ‘D’:
{ printf(“Passed.”);
break; }

case ‘F’:
{ printf(“Failed!”);
break; }

default:
{ printf(“Invalid grade!”);
break; }

} /* hctiws */

Case 1? body 1
true

false

Default body

Case 2? body 2
true

false

Case N? body N
true

false

... ...

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 16

Structured Programming

• Selection: break in switch statement
– Flow chart: Example:

switch(LetterGrade)
{ case ‘A’:

{ printf(“Excellent!”);
break; }

case ‘B’:
case ‘C’:
case ‘D’:
{ printf(“Passed.”);
break; }

case ‘F’:
{ printf(“Failed!”);
break; }

default:
{ printf(“Invalid grade!”);
break; }

} /* hctiws */

Case 1? body 1
true

false

Default body

Case 2? body 2
true

false

Case N? body N
true

false

... ...

control flow with break
control flow without break

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 9

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 17

Structured Programming

• Repetition: while loop
– Flow chart:

– Example:

– Note:
• The condition is evaluated at the beginning of each loop!

Condition? Body
true

false

int product = 2;

while (product < 1000)

{ product *= 2;

} /* elihw */

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 18

Structured Programming

• Repetition: break/continue in while loop
– Flow chart:

– Control flow:

– Note:
• The condition is evaluated at the beginning of each loop!

Condition? Body
true

false

control flow with break

control flow with continue

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 10

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 19

Structured Programming

• Repetition: do-while loop
– Flow chart:

– Example:

– Note:
• The condition is evaluated at the end of each loop!

Condition?

Body

true
false

int product = 2;

do { product *= 2;

} while (product < 1000);

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 20

Structured Programming

• Repetition: break/continue in do-while loop
– Flow chart:

– Control flow:

– Note:
• The condition is evaluated at the end of each loop!

Condition?

Body

true
false

control flow with break

control flow with continue

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 11

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 21

Structured Programming

• Repetition: for loop
– Flow chart:

– Example:

– Syntax:
• for(initialization; condition; increment)

{ body }

for(i = 0; i < 10; i++)

{ printf(“i = %d\n”, i);

} /* rof */

Condition? Body
true

false

Initialization

Increment

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 22

Structured Programming

• Repetition: break/continue in for loop
– Flow chart:

– Control flow:

– Syntax:
• for(initialization; condition; increment)

{ body }

Condition? Body
true

false

Initialization

Increment

control flow with break

control flow with continue

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 12

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 23

Arbitrary Control Flow

• Arbitrary jumps: goto statement
– goto statement jumps to the specified

labeled statement (within the same function)

– Example:

– Warning:
• goto statement allows un-structured programming!

• goto statement should be avoided whenever possible!

begin: count = 0;
goto next;

repeat: if (count > 100)
{ goto end; }

next: count++;
if (count == 77)

{ goto next; }
goto repeat;

end: printf(“%d”, count);

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 24

Structured Program Composition

• Initial flow chart
– Start

– Program body

– Finish

• Statement sequences
– Statement blocks can be

concatenated

– Sequential execution

• Nested control structures
– control structures can be placed

wherever statement blocks can
be placed in the code

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 13

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 25

Structured Program Composition

• Example:
– Initial flow chart

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 26

Structured Program Composition

• Example:
– Sequential

composition

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 14

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 27

Structured Program Composition

• Example:
– insertion of

another
sequential
statement

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 28

Structured Program Composition

• Example:
– insertion of
if – else
statement

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 15

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 29

Structured Program Composition

• Example:
– insertion of

sequential
statement

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 30

Structured Program Composition

• Example:
– insertion of
if – else
statement

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 16

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 31

Structured Program Composition

• Example:
– insertion of

sequential
statement

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 32

Structured Program Composition

• Example:
– insertion of

sequential
statement
(twice)

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 17

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 33

Structured Program Composition

• Example:
– insertion of
switch
statement

– etc. ...

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 34

Structured Program Example

• Example Average.c

• Task:
– Compute the average of a set of

floating point values

– The user enters the values consecutively
– The user enters -1 when done

Sentinel-controlled repetition

– Print the number of values entered and
the calculated average

• Caution:
– The average of 0 values is undefined!

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 18

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 35

Structured Program Example

• Average of values: Average.c (part 1/3)
/* Average.c: compute the average of a set of numbers */
/* */
/* author: Rainer Doemer */
/* */
/* modifications: */
/* 10/10/04 RD sentinel controlled loop */
/* 10/10/04 RD initial version */

#include <stdio.h>

/* main function */

int main(void)
{

/* variable definitions */
int counter;
double value;
double total;
double average;

...

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 36

Structured Program Example

• Average of values: Average.c (part 2/3)
...

/* input and computation section */
counter = 0;
total = 0.0;
while (1)

{ printf("Please enter a value (or -1 to quit): ");
scanf("%lf", &value);
if (value == -1.0)

{ break;
} /* fi */

total += value;
counter++;
} /* elihw */

...

EECS22: Advanced C Programming Lecture 4

(c) 2017 R. Doemer 19

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 37

Structured Program Example

• Average of values: Average.c (part 3/3)
...

/* computation and output section */
printf("%d values entered.\n", counter);
if (counter >= 1)

{ average = total / counter;
printf("The average is %f.\n", average);
} /* fi */

/* exit */
return 0;

} /* end of main */

/* EOF */

EECS22: Advanced C Programming, Lecture 4 (c) 2017 R. Doemer 38

Structured Program Example

• Example session: Average.c
% vi Average.c
% gcc Average.c -o Average -Wall –ansi –std=c99
% ./Average
Please enter a value (or -1 to quit): 2
Please enter a value (or -1 to quit): 3
Please enter a value (or -1 to quit): 4
Please enter a value (or -1 to quit): 5
Please enter a value (or -1 to quit): -1
4 values entered.
The average is 3.500000.
% ./Average
Please enter a value (or -1 to quit): -1
0 values entered.
%

