
EECS 22: Assignment 2

Prepared by: Saeed Karimi Bidhendi, Prof. Dang, Prof. Rainer Dömer

October 10, 2017

Due on Wednesday 10/25/2017 6:00pm. Note: this is a two-week assignment.

Contents
1 Digital Image Processing [100 points + 10 bonus points] 1

1.1 Introduction . 1
1.2 Initial Setup . 2
1.3 Program Specification . 2

1.3.1 Load a PPM Image . 3
1.3.2 Save a PPM Image . 4
1.3.3 Change a color image to Black & White . 4
1.3.4 Make a negative of an image . 5
1.3.5 Color-Filter an image . 6
1.3.6 Edge Detection . 7
1.3.7 Shuffle . 9
1.3.8 Flip Image Vertically . 10
1.3.9 Mirror Image Vertically . 10
1.3.10 Add borders to an image (Bonus Point) . 11
1.3.11 Test all functions . 12

1.4 Implementation . 14
1.4.1 Function Prototypes . 14
1.4.2 Global constants . 15
1.4.3 Pass in arrays by reference . 15

2 Script File 16

3 Submission 16

4 Grading 17

1 Digital Image Processing [100 points + 10 bonus points]
In this assignment you will learn some basic digital image processing (DIP) techniques by developing an image
manipulation program called PhotoLab. Using the PhotoLab, the user can load an image from a file, apply a set of
DIP operations to the image, and save the processed image in a file.

1.1 Introduction
A digital image is essentially a two-dimensional matrix, which can be represented in C by a two-dimensional array
of pixels. A pixel is the smallest unit of an image. The color of each pixel is composed of three primary colors, red,
green, and blue; each color is represented by an intensity value between 0 and 255. In this assignment, you will work
on images with a fixed size, 600×400, and type, Portable Pixel Map (PPM).

1

The structure of a PPM file consists of two parts, a header and image data. In the header, the first line specifies the
type of the image, P6; the next line shows the width and height of the image; the last line is the maximum intensity
value. After the header follows the image data, arranged as RGBRGBRGB..., pixel by pixel in binary representation.

Here is an example of a PPM image file:

P6
600 400
255
RGBRGBRGB...

1.2 Initial Setup
Before you start working on the assignment, copy the source code template and image resource file to your own
directory by doing the following:

mkdir hw2
cd hw2
cp ˜eecs22/public/PhotoLab.c .
cp ˜eecs22/public/HSSOE.ppm .

NOTE: Please execute the above setup commands only ONCE before you start working on the assignment! Do not
execute them after you start the implementation, otherwise your code will be overwritten!

The file PhotoLab.c is the template file where you get started. It provides the functions for image file loading and
saving, test automation as well as the DIP function prototypes and some variables (do not change those function
prototypes or variable definitions). You are free to add more variables and functions to the program.
The file HSSOE.ppm is the PPM image that we will use to test the DIP operations. Once a DIP operation is done,
you can save the modified image. You will be prompted for a name of the image. The saved image name.ppm will be
automatically converted to a JPEG image and sent to the folder public html in your home directory. You are then able
to see the image in a web browser at: http://bondi.eecs.uci.edu/∼youruserid, if required names are used (i.e. ’bw’,
’negative’, ’colorfilter’, ’edge’, ’shuffle’, ’vflip’, ’vmirror’, ’border’ for each corresponding function). If you save
images by other names, use the link http://bondi.eecs.uci.edu/∼youruserid/imagename.jpg to access the photo.

Note that whatever you put in the public html directory will be publicly accessible; make sure you don’t put files there
that you don’t want to share, i.e. do not put your source code into that directory.

1.3 Program Specification
In this assignment, your program should be able to load and save image files. To let you concentrate on DIP operations,
the functions for file loading and saving are provided. These functions are able to catch many file loading and saving
errors, and show corresponding error messages.

Your program is a menu driven program. The user should be able to select DIP operations from a menu as the one
shown below:

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Make a negative of an image
5: Color filter an image
6: Sketch the edge of an image
7: Shuffle an image
8: Flip an image vertically
9: Mirror an image vertically

2

10: Add Border to an image
11: Test all functions
12: Exit

please make your choice:

1.3.1 Load a PPM Image

This option prompts the user for the name of an image file. You don’t have to implement a file loading function; just
use the provided one, LoadImage. Once option 1 is selected, the following should be shown:

Please input the file name to load: HSSOE

After a name, for example HSSOE.ppm, is entered, the PhotoLab will load the file HSSOE.ppm. Note that, in this
assignment please always enter file names without the extension when you load or save a file (i.e. enter ’HSSOE’,
instead of ’HSSOE.ppm’). If it is loaded correctly, the following is shown:

Please make your choice: 1
Please input the file name to load: HSSOE
HSSOE.ppm was loaded successfully!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Make a negative of an image
5: Color filter an image
6: Sketch the edge of an image
7: Shuffle an image
8: Flip an image vertically
9: Mirror an image vertically
10: Add Border to an image
11: Test all functions
12: Exit
please make your choice:

Then, you can select other options. If there is a loading error, for example the file name is entered incorrectly or the
file does not exist, the following message is shown:

Cannot open file "HSSOE.ppm.ppm" for loading!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Make a negative of an image
5: Color filter an image
6: Sketch the edge of an image
7: Shuffle an image
8: Flip an image vertically
9: Mirror an image vertically
10: Add Border to an image
11: Test all functions
12: Exit
please make your choice:

In this case, try option 1 again with the correct filename.

3

1.3.2 Save a PPM Image

This option prompts the user for the name of the target image file. You don’t have to implement a file saving function;
just use the provided one, SaveImage. Once option 2 is selected, the following is shown:

Please make your choice: 2
Please input the file name to save: negative
negative.ppm was saved successfully.
negative.jpg was stored for viewing.

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Make a negative of an image
5: Color filter an image
6: Sketch the edge of an image
7: Shuffle an image
8: Flip an image vertically
9: Mirror an image vertically
10: Add Border to an image
11: Test all functions
12: Exit
please make your choice:

The saved image will be automatically converted to a JPEG image and sent to the folder public html. You then are
able to see the image at: http://bondi.eecs.uci.edu/∼youruserid
(For off campus, the link is: http://bondi.eecs.uci.edu/∼youruserid/imagename.jpg)

1.3.3 Change a color image to Black & White

(a) Color image (b) Black and white image

Figure 1: A color image and its black and white counterpart.

A black and white image is the one that the intensity values are the same for all color channels, red, green, and
blue, at each pixel. To change a color image to grey, assign a new intensity, which is given by (R+G+B)/3, to all
the color channels at a pixel. The R,G,B are the old intensity values for the red, the green, and the blue channels at
the pixel. You need to define and implement the following function to do the job.

/* change color image to black and white */
void BlackNWhite(unsigned char R[WIDTH][HEIGHT],

4

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

Figure 1 shows an example of this operation. Your program’s output for this option should be like:

Please make your choice: 3
"Black & White" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Make a negative of an image
5: Color filter an image
6: Sketch the edge of an image
7: Shuffle an image
8: Flip an image vertically
9: Mirror an image vertically
10: Add Border to an image
11: Test all functions
12: Exit
please make your choice:

Save the image with name ’bw’ after this step.

1.3.4 Make a negative of an image

A negative image is an image in which all the intensity values have been inverted. To achieve this, each intensity value
at a pixel is subtracted from the maximum value, 255, and the result is assigned to the pixel as a new intensity. You
need to define and implement a function to do the job.
You need to define and implement the following function to do this DIP.

/* reverse image color */
void Negative(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

(a) Original image (b) Negative image

Figure 2: An image and its negative counterpart.

Figure 2 shows an example of this operation. Your program’s output for this option should be like:

5

Please make your choice: 4
"Negative" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Make a negative of an image
5: Color filter an image
6: Sketch the edge of an image
7: Shuffle an image
8: Flip an image vertically
9: Mirror an image vertically
10: Add Border to an image
11: Test all functions
12: Exit
please make your choice:

Save the image with name ’negative’ after this step.

1.3.5 Color-Filter an image

The functionality of the color filter is to change the selected color in the picture to the color the user wants. To do that,
first the user has to choose the color by entering the RGB intensity and the threshold of the color the user wants to
modify. Also, the users have to enter the replacement value for each RGB component. All pixels in the picture with
color in the chosen range will be replaced with new color. The following shows the pseudo code for the color filter.

if (R in the range of [target_r - threshold, target_r + threshold]) and
(G in the range of [target_g - threshold, target_g + threshold]) and
(B in the range of [target_b - threshold, target_b + threshold])

R = replace_r ;
G = replace_g ;
B = replace_b ;

else
keep the current color

You need to define and implement the following function to do this DIP. Note that your program should check boundary
for the new color values, i.e. the intensity should be in the range of [0, 255].

/* color filter */
void ColorFilter(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT],
int target_r, int target_g, int target_b, int threshold,
int replace_r, int replace_g, int replace_b);

Figure 3 shows an example of this operation. In this example, we change the color of sky from blue to red by setting
the target r = 130, target g = 130, target b = 250, threshold = 70, replace r = 255, replace g = 0, replace b = 0.

Please make your choice: 5
Enter Red component for the target color: 130
Enter Green component for the target color: 130
Enter Blue component for the target color: 250
Enter threshold for the color difference: 70

6

(a) Original image (b) Color filtered image

Figure 3: An image and its color filtered counterpart.

Enter value for Red component in the target color: 255
Enter value for Green component in the target color: 0
Enter value for Blue component in the target color: 0
"Color Filter" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Make a negative of an image
5: Color filter an image
6: Sketch the edge of an image
7: Shuffle an image
8: Flip an image vertically
9: Mirror an image vertically
10: Add Border to an image
11: Test all functions
12: Exit
please make your choice:

Save the image with name ’colorfilter’ after this step.

1.3.6 Edge Detection

The edge detection works this way: the intensity value at each pixel is mapped to a new value, which is the sum of
itself and its 8 neighbors with different parameters. Note the sum of all parameters is 0, which will result in a vary dark
image where only the edges are detected are colored. The following shows an example of the filter and the applied
pixel:

Filter Original Pixels
X X X X X X X X X X
X -1 -1 -1 X X A B C X
X -1 8 -1 X X D E F X
X -1 -1 -1 X X G H I X
X X X X X X X X X X

7

(a) Original Image (b) Edge Image

Figure 4: An image and its edge counterpart.

To detect an edge of the image, the intensity of the center pixel (E) with the value is changed to (−A−B−C−D+8∗
E −F −G−H − I). Repeat this for every pixel, and for every color channel (red, green, and blue) of the image. You
need to define and implement a function to do this DIP. Note that you have to set the boundary for the newly generated
pixel value, i.e., the value should be within the range of [0,255].
Hint (the following code can be used to handle pixel intensity under- or overflow):

if (v<0) v=0;
else if (v>255) v=255;

Note that special care has to be taken for pixels located at the image boundaries. For ease of implementation, you may
choose to ignore the pixels at the border of the image where no neighbor pixels exist.
You need to define and implement the following function to do this DIP.

/* Find edge of an image */
void Edge(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

The edge image should look like the figure shown in Figure 4(b):

Please enter your choice: 6
"Edge" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Make a negative of an image
5: Color filter an image
6: Sketch the edge of an image
7: Shuffle an image
8: Flip an image vertically
9: Mirror an image vertically
10: Add Border to an image
11: Test all functions
12: Exit
please make your choice:

8

Save the image with name ’edge’ after this step.

1.3.7 Shuffle

(a) Original Image (b) Shuffled Image

Figure 5: An image and its shuffled counterpart.

Shuffling works this way: Divide the image into 16 equally sized image blocks. Then randomly choose a pair of image
blocks and swap it’s R, G and B values. Repeat choosing and swapping process until all image blocks are swapped.
Note that on each run, shuffle should produce a different image.
You need to define and implement the following function to do this DIP.

/* Shuffle an image */
void Shuffle(unsigned char R[WIDTH][HEIGHT],
unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

The shuffled image should look similar to the figure shown in Figure 5(b):

Please enter your choice: 7
"Shuffle" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Make a negative of an image
5: Color filter an image
6: Sketch the edge of an image
7: Shuffle an image
8: Flip an image vertically
9: Mirror an image vertically
10: Add Border to an image
11: Test all functions
12: Exit
please make your choice:

Save the image with name ’shuffle’ after this step.

9

(a) Original image (b) Vertically flipped image

Figure 6: An image and its vertically flipped counterpart.

1.3.8 Flip Image Vertically

To flip an image vertically, the intensity values in vertical direction should be reversed. The following shows an
example.

1 2 3 4 5 3 4 5 6 7
before vertical flip: 0 1 2 3 4 after vertical flip: 0 1 2 3 4

3 4 5 6 7 1 2 3 4 5

You need to define and implement the following function to do this DIP.

/* flip image vertically */
void VFlip(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

Figure 6 shows an example of this operation. Your program’s output for this option should be like:

Please make your choice: 8
"VFlip" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Make a negative of an image
5: Color filter an image
6: Sketch the edge of an image
7: Shuffle an image
8: Flip an image vertically
9: Mirror an image vertically
10: Add Border to an image
11: Test all functions
12: Exit
please make your choice:

Save the image with name ’vflip’ after this step.

1.3.9 Mirror Image Vertically

To mirror an image vertically, the intensity values in vertical direction at the top should be reversed and copied to the
bottom. The following shows an example.

10

1 4 6 1 4 6
5 2 1 5 2 1

before vertical mirror: 7 8 9 after vertical mirror: 7 8 9
8 2 4 5 2 1
9 3 7 1 4 6

You need to define and implement the following function to do this DIP.

/* mirror image vertically */
void VMirror(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

Figure 7 shows an example of this operation. Your program’s output for this option should be like:

(a) Original image (b) Vertically mirrored image

Figure 7: An image and its vertically mirrored counterpart.

Please make your choice: 9
"VMirror" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Make a negative of an image
5: Color filter an image
6: Sketch the edge of an image
7: Shuffle an image
8: Flip an image vertically
9: Mirror an image vertically
10: Add Border to an image
11: Test all functions
12: Exit
please make your choice:

Save the image with name ’vmirror’ after this step.

1.3.10 Add borders to an image (Bonus Point)

This operation will add borders to the current image. The border color and width (in pixels) of the borders are param-
eters given by the user. Within your implementation, you should define an aspect ratio of 16:9 for your horizontal to
vertical border. This should make your horizontal border look thicker than the vertical one. Figure 8 shows an example

11

(a) Original image (b) Image with borders, border color = yellow, width = 64
pixels

Figure 8: An image and its counterpart when borders are added.

of adding borders to an image.

You need to define and implement the following function to do this DIP.

/* add a border to the image */
void AddBorder(unsigned char R[WIDTH][HEIGHT],
unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT],
char color[SLEN], int border_width);

Once user chooses this option, your program’s output should be like:

please make your choice: 10
Enter border width: 64
Available border colors : black, white, red, green, blue, yellow, cyan, pink, orange
Select border color from the options: yellow
"Border" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to Black & White
4: Make a negative of an image
5: Color filter an image
6: Sketch the edge of an image
7: Shuffle an image
8: Flip an image vertically
9: Mirror an image vertically
10: Add Border to an image
11: Test all functions
12: Exit
please make your choice:

Save the image with name ’border’ after this step.

1.3.11 Test all functions

This option helps the user to test all previous functions in one shot. You dont have to implement a test all function;
just use the provided one, AutoTest. This function call DIP functions one by one to test and generate the outputs. The

12

function looks like:

void AutoTest(unsigned char R[WIDTH][HEIGHT],
unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT])
{
char fname[SLEN] = "HSSOE";
char sname[SLEN];

LoadImage(fname, R, G, B);
BlackNWhite(R, G, B);
strcpy(sname, "bw");/*string copy function to prepare the file name to be saved*/
SaveImage(sname, R, G, B);
printf("Black and White tested!\n\n");

LoadImage(fname, R, G, B);
Negative(R, G, B);
strcpy(sname, "negative");/*string copy function to prepare the file name to be saved*/
SaveImage(sname, R, G, B);
printf("Negative tested!\n\n");

LoadImage(fname, R, G, B);
ColorFilter(R, G, B, 190, 100, 150, 60, 0, 0, 255);
strcpy(sname, "colorfilter");
SaveImage(sname, R, G, B);
printf("Color Filter tested!\n\n");

...

...
}

Once user chooses this option, your program’s output should be like:

Please make your choice: 11

HSSOE.ppm was loaded successfully!
"Black \& White" operation is done!
bw.ppm was saved successfully.
bw.jpg was stored for viewing.
Black and White tested!

HSSOE.ppm was loaded successfully!
"Negative" operation is done!
negative.ppm was saved successfully.
negative.jpg was stored for viewing.
Negative tested!

HSSOE.ppm was loaded successfully!
"Color Filter" operation is done!
colorfilter.ppm was saved successfully.
colorfilter.jpg was stored for viewing.
Color Filter tested!

13

...

...

After runing this fucntion successfully, you are able to see all images in a web browser at: http://bondi.eecs.uci.edu/∼youruserid

1.4 Implementation
1.4.1 Function Prototypes

For this assignment, you need to define the following functions (those function prototypes are already provided in
PhotoLab.c. Please do not change them):

/*** function declarations ***/

/* print a menu */
void PrintMenu();

/* load image from a file */
int LoadImage(char fname[SLEN], unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

/* save a processed image */
int SaveImage(char fname[SLEN], unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

/* change color image to black and white */
void BlackNWhite(unsigned char R[WIDTH][HEIGHT],
unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

/* reverse image color */
void Negative(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

/* color filter */
void ColorFilter(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT],
int target_r, int target_g, int target_b, int threshold,
int replace_r, int replace_g, int replace_b);

/* edge detection */
void Edge(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

/* Shuffle an image */
void Shuffle(unsigned char R[WIDTH][HEIGHT],
unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

14

/* flip image vertically */
void VFlip(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

/* mirror image vertically */
void VMirror(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

/* add border */
void AddBorder(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT],
color[SLEN],
int border_width);

You may want to define other functions as needed.

1.4.2 Global constants

You also need the following global constants (they are also declared in PhotoLab.c, please don’t change their names):

#define WIDTH 600 /* Image width */
#define HEIGHT 400 /* image height */
#define SLEN 80 /* maximum length of file names and strings */

1.4.3 Pass in arrays by reference

In the main function, three two-dimensional arrays are defined. They are used to save the RGB information for the
current image:

int main()
{
unsigned char R[WIDTH][HEIGHT]; /* for image data */
unsigned char G[WIDTH][HEIGHT];
unsigned char B[WIDTH][HEIGHT];
}

When any of the DIP operations is called in the main function, those three arrays: R[WIDTH][HEIGHT], G[WIDTH][HEIGHT],
B[WIDTH][HEIGHT] are the parameters passed into the DIP functions. Since arrays are passed by reference, any
changes to R[][], G[][], B[][] in the DIP functions will be applied to those variables in the main function. In this
way, the current image can be updated by DIP functions without defining global variables.

In your DIP function implementation, there are two ways to save the target image information in R[][], G[][], B[][].
Both options work and you should decide which option is better based on the specific DIP manipulation function at
hand.

Option 1: using local variables You can define local variables to save the target image information. For example:

void DIP_function_name()
{
unsigned char RT[WIDTH][HEIGHT]; /* for target image data */

15

unsigned char GT[WIDTH][HEIGHT];
unsigned char BT[WIDTH][HEIGHT];
}

Then, at the end of each DIP function implementation, you should copy the data in RT[][], GT[][], BT[][] over to
R[][], G[][], B[][].

Option 2: in place manipulation Sometimes you do not have to create new local array variables to save the target
image information. Instead, you can just manipulate on R[][], G[][], B[][] directly. For example, in the implemen-
tation of Negative() function, you can assign the result of 255−R[][] directly back to the pixel entry.

2 Script File
To demonstrate that your program works correctly, perform the following steps and submit the log as your script file:

1. Start the script by typing the command: script

2. Compile and run your program

3. Choose ’Test all functions’ (The file names must be ’bw’, ’negative’, ’colorfilter’, ’edge’, ’shuffle’, ’vflip’,
’vmirror’, ’border’ for the corresponding function)

4. Exit the program

5. Stop the script by typing the command: exit

6. Rename the script file to PhotoLab.script

NOTE: make sure use exactly the same names as shown in the above steps when saving modified images! The script
file is important, and will be checked in grading; you must follow the above steps to create the script file.

3 Submission
Only compilable submissions can get up 100 points. Not compilable submissions get at most 50 points! We compile
all submissions with -ansi -std=c99 -Wall. Warnings will reduce your points. Here is a checklist of the files
you should have for submission:
In the hw2 directory, you should have the following files in your linux account:

• PhotoLab.c
The complete program that is compilable

• PhotoLab.txt
Briefly describe what your program does and why you implemented it in this way

• PhotoLab.script
The typescript shows that your program runs correctly with the given input.

We do require these exact file names. If you use different file names, we will not see your files for grading. Now, you
should change the current directory to the directory containing the hw2 directory. Then type the command:
% ∼eecs22/bin/turnin.sh
which will guide you through the submission process.

You will be asked if you want to submit each file. Type yes or no. If you type “n” or “y” or just plain return,
they will be ignored and be taken as a no. You can use the same command to update your submitted files until the
submission deadline.

Below is an example of how you would submit your homework:

16

bondi% ls # This step is just to make sure that you are in the correct directory that contains hw2/
hw2/
bondi% ∼eecs22/bin/turnin.sh
==
EECS 22 Fall 2016:
Assignment "hw2" submission for eecs22
Due date: Thu Oct 6 18:00:00 2016

*** Looking for files:

*** PhotoLab.c

*** PhotoLab.txt

*** PhotoLab.script
==

** Please confirm the following: *
** "I have read the Section on Academic Honesty in the *
** UCI Catalogue of Classes (available online at *
** http://www.editor.uci.edu/catalogue/appx/appx.2.htm#gen0) *
** and submit my original work accordingly." *
Please type YES to confirm. YES
==
File PhotoLab.c exists, overwrite? [yes, no] yes
File PhotoLab.c has been overwritten
Submit PhotoLab.txt [yes, no]? yes
File PhotoLab.txt has been submitted
Submit PhotoLab.script [yes, no]? yes
File PhotoLab.script has been submitted
==
Summary:
==
Submitted on Tue Sep 20 17:00:21 2016
You just submitted file(s):
PhotoLab.c
PhotoLab.txt
PhotoLab.script
% _

Please leave the images generated by your program in your public html directory. Don’t delete them as we may
consider them when grading! You don’t have to submit any images.

4 Grading
• Handle menu and user input correctly (15 pts)

• DIP operations from menu item 3 to 9 (70 pts, 10 pts each)

• Autotest works (10 pts)

• Code cleanliness (5 pts), if your code is not well formatted, you will lose partial points

• Bonus: menu item 10 add border (10 pts)

17

	Digital Image Processing [100 points + 10 bonus points]
	Introduction
	Initial Setup
	Program Specification
	Load a PPM Image
	Save a PPM Image
	Change a color image to Black & White
	Make a negative of an image
	Color-Filter an image
	Edge Detection
	Shuffle
	Flip Image Vertically
	Mirror Image Vertically
	Add borders to an image (Bonus Point)
	Test all functions

	Implementation
	Function Prototypes
	Global constants
	Pass in arrays by reference

	 Script File
	Submission
	Grading

