
EECS 22: Assignment 3

Prepared by: Mina Chookhachizadeh Moghadam, Prof. Dang, Prof. Rainer Domer

October 25, 2017

Due on Wednesday 11/08/2017 6:00pm. Note: this is a two-week assignment.

Contents
1 Digital Image Processing 1

1.1 Introduction . 1
1.2 Initial Setup . 2
1.3 Decompose the program into multiple modules . 2
1.4 Compile the program with multiple modules using static shared library 2
1.5 Using ’make’ and ’Makefile’ . 3
1.6 Advanced DIP operations . 3

1.6.1 Add noise to an image . 4
1.6.2 Sharpen an image . 5
1.6.3 Bit Manipulations: Posterize an image . 6

1.7 Test all functions . 8
1.7.1 Motion Blur: Bonus . 9

1.8 Support for the DEBUG mode . 10
1.9 Extend the Makefile . 10

2 Implementation Details 11
2.1 Function Prototypes . 11
2.2 Global constants . 11

3 Budgeting your time 11

4 Script File 12

5 Submission 12

6 Grading 13

1 Digital Image Processing
In this assignment you will learn how to break a program into multiple modules, and compile them into one program.
Based on the program PhotoLab for Assignment 2, you will be asked to develop some advanced digital image pro-
cessing (DIP) operations, partition them in separate modules, manipulate images using bit operations, and develop an
appropriate Makefile to compile your program with DEBUG mode on or off.

1.1 Introduction
In Assignment 2, you were asked to develop an image manipulation program PhotoLab by using DIP techniques. The
user can load an image from a file, apply a set of DIP operations to the image, and save the processed image in a file
by using the PhotoLab. This assignment will be based on Assignment 2.

1

1.2 Initial Setup
Before you start working on this assignment, do the following:

mkdir hw3
cd hw3
cp ˜eecs22/public/PhotoLab_v2.c .
cp ˜eecs22/public/HSSOE.ppm .

We will extend the PhotoLab program based on Assignment 2. You must use the provided tmplate file PhotoLab v2.c
file.
Once a DIP operation is done, you can save the modified image as name, and it will be automatically converted to a
JPEG image and sent to the folder public html in your home directory. Then you are able to see the image with the
web browsers Firefox, Safari, Internet Explorer, Edge at: http://bondi.eecs.uci.edu/∼youruserid, if required names are
used. Chrome is not recommended through caching issues and wrongly displayed index files. If you save images by
other names, use the link http://bondi.eecs.uci.edu/∼youruserid/imagename.jpg to access the photo.

Note that whatever you put in the public html directory will be publicly accessible; make sure you don’t put files there
that you don’t want to share, i.e. do not put your source code into that directory.

1.3 Decompose the program into multiple modules
Please decompose the PhotoLab v2.c file into multiple modules and header files:

• PhotoLab.c: the main module contains the main() function, and the menu function PrintMenu() as well as
AutoTest().

• FileIO.c: the module for the function definitions of LoadImage() and SaveImage().

• FileIO.h: the header file for FileIO.c, with the function declarations of LoadImage() and SaveImage().

• Constants.h: the header file in which the constants to be used are defined.

• DIPs.c: the module for the DIP function definitions in Assignment 2, i.e. BlackNWhite, Negative, ColorFilter,
Edge, Shuffle, VFlip, VMirror, AddBorder.

• DIPs.h: the header file for DIPs.c, with the DIP function declarations.

• Advanced.c: the module for the function definition of new filters in Assignment 3, Noise(), Sharpen(), Poster-
ize(), and MotionBlur().

• Advanced.h: the header file for Advanced.c, with the function declarations of Noise(), Sharpen(), Posterize(),
and MotionBlur().

HINT: Please refer to the slides of lectures covering Compiler components, translation units, Make and Makefile for
an example of decomposing programs into different modules.

1.4 Compile the program with multiple modules using static shared library
The PhotoLab program is now modularized into different modules: PhotoLab, FileIO, DIPs and Advanced. In this
assignment we are using shared libraries to group the compiled object code files in to static libraries. Often C func-
tions and methods which can be shared by more than one application are broken out of the application’s source code,
compiled and bundled into a library.

As shown in lectures, in order to generate the libraries first compile the source code into object files. Use ”-c” option
for gcc to generate the object files for each module, e.g.
% gcc -c FileIO.c -o FileIO.o -ansi -std=c99 -Wall

2

% gcc -c DIPs.c -o DIPs.o -ansi -std=c99 -Wall
...

As shown in the Make and Makefile lecture, libraries are typically names with the prefix ”lib”. Here we want to create
a librariy named lib f ilter:
% ar rc libfilter.a DIPs.o Advanced.o
% ranlib libfilter.a

Linking with the library:
% gcc PhotoLab.o -lfilter -L. -o PhotoLab

Execute the program:
% ./PhotoLab
program executes
% _

1.5 Using ’make’ and ’Makefile’
On the other hand, we can put the commands above into a Makefile and use the make utility to automatically build the
executable program from source code. Please create your own Makefile with at least the following targets:

• all: the target to generate the executable programs.

• clean: the target to clean all the intermediate files, e.g. object files, autogenerated images, and the executable
program(s). Be careful to only delete intermediates files, not any of your true source files.

• PhotoLabTest: the target to create and run PhotoLabTest.

• PhotoLab: the target to generate the executable program PhotoLab.

To use your Makefile, please use this command:
% make all
The executable program PhotoLab shall then be automatically generated.

Requirement: There must be a rule fore each object file depending on the corresponding .c file and any other needed
dependency. Dependencies which are not needed will reduce the points.

HINT: Please refer to the slides of Lecture 11 for an example on how to create a Makefile.

1.6 Advanced DIP operations
In this assignment, please add one more module named Advanced, consisting of Advanced.c and Advanced.h and
implement the advanced DIP operations described below.

Please reuse the menu you designed for Assignment 2 and extend it with the advanced operations. The user should be
able to select DIP operations from a menu as the one shown below:

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Color filter an image
6: Sketch the edge of an image
7: Shuffle an image

3

8: Flip an image vertically
9: Mirror an image vertically
10: Add border to the image
11: Add noise to an image
12: Sharpen an image
13: Posterize an image
14: Motion Blur
15: Test all functions
16: Exit

please make your choice:

1.6.1 Add noise to an image

In this operation, you add white noise to an image. You need to define and implement a function to do the job. If the
percentage of noise is n, then the number of noise pixels added to the image is given by n∗WIDT H ∗HEIGHT/100,
where WIDT H and HEIGHT are the image size. The noisy pixels are distributed randomly and they are white. To
generate the initial random number, you have to use a random number generator which is provided by the C standard
function rand(). This function generates a random number of type int in the range of 0 to RAND MAX . This
function is declared in the header file stdlib.h.
In practice, no computer function can produce truly random data; they only produce pseudo-random numbers. These
are computed by a formula and the number sequences they produce are repeatable. A seed value is usually used by
the random number generator to generate the first number. Therefore, if you use the same seed value all the time, the
same sequence of ”random” numbers will be generated (i.e. your program will always produce the same ”random”
number in every program run). To avoid this, we can use the current time of the day to set the random seed, as this
will always be changing with every program run. With this trick, your program will produce different numbers every
time you run it.
To set the seed value, you have to use the function srand(), which is also declared in the header file stdlib.h. For
the current time of the day, you can use the function time(), which is defined in the header file time.h (stdlib.h
and time.h are header files just like the stdio.h file that we have been using so far).
In summary, use the following code fragments to generate the random number for the noise:

1. Include the stdlib.h and time.h header files at the beginning of your program:

#include <stdlib.h>
#include <time.h>

2. Include the following lines at the beginning of your main function:

/* initialize the random number generator with the current time */
srand(time(NULL));

3. To simulate locating a random position, use the following statement:

/* generate a random pixel */
x = rand() % WIDTH; /* You need to define the variable x. */
y = rand() % HEIGHT; /* You need to define the variable x. */

The integer variables x and y then will have a random values in the range from 0 to WIDT H and 0 to HEIGHT
accordingly.

It can happen that by coincidence the same pixel will be selected multiple times. This behavior should not be prevented.
Function Prototype: You need to define and implement the following function to do this DIP.

/* Add noise to image */
void Noise(int n,

unsigned char R[WIDTH][HEIGHT],

4

(a) Original image (b) Noisy image with n=30

Figure 1: An image and its noise corrupted counterpart.

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

Here, n specifies the percentage of noise in the image.
Figure 5 shows an example of this operation where n is 30. Once the user chooses this option, the whole menu shuld
be printed out and after that your program’s output look slike this:

Please make enter your choice: 11
Please input noise percentage: 30
"Noise" operation is done!

Save the image with name ’noise’ after this step.

1.6.2 Sharpen an image

The sharpening works this way: the intensity value at each pixel is mapped to a new value, which is the sum of itself
and its 8 neighbours with different parameters. To sharpen the image is very similar to finding edges. Adding the
original image to its edge will result in a new image where the edges are enhanced, and make it look sharper. The
following shows an example of the filter and the applied pixel:

Filter : Original Pixels
X X X X X X X X X X
X -1 -1 -1 X X A B C X
X -1 9 -1 X X D E F X
X -1 -1 -1 X X G H I X
X X X X X X X X X X

To sharpen an edge of the image, the intensity of the center pixel (E) with the value is changed to (−A−B−C−D+
9 ∗E−F −G−H− I). Repeat this for every pixel, and for every color channel (red, green, and blue) of the image.
You need to define and implement a function to do this DIP. Note that you have to set the boundary for the newly
generated pixel value, i.e., the value should be within the range of [0,255]
Note that special care has to be taken for pixels located at the image boundaries. For ease of implementation, you may
choose to ignore the pixels at the border of the image where no neighbor pixels exist. It means that they can remain
the same as before.
You need to define and implement the following function to do this DIP.

5

/* Sharpen an image */
void Sharpen(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

The sharpen image should look like the figure shown in Figure 2(b):

(a) Original Image (b) Sharpened Image

Figure 2: An image and its sharpened counterpart.

Please enter your choice:12
"Sharpen" operation is done!

Save the image with name ’sharpen’ after this step.

1.6.3 Bit Manipulations: Posterize an image

Posterization of an image entails conversion of a continuous gradation of tone to several regions of fewer tones, with
abrupt changes from one tone to another. This was originally done with photographic processes to create posters. It
can now be done photographically or with digital image processing, and may be deliberate or may be an unintended
artifact of color quantization. (http://en.wikipedia.org/wiki/Posterization).

We are going to use bit manipulations to posterize the image. As before, a pixel in the image is represented by a
3-tuple (r, g, b) where r, g, and b are the values for the intensities of the red, green, and blue channels respectively. The
range of r, g, and b are from 0 to 255 inclusively. As such, we use unsigned char variables to store the values of these
three values.

To posterize the image, we are going to change the least n,n ∈ {1,2,3, . . .8} significant bits of color intensity values
so as to change the tone of the pixels. Basically, we will change the nth least significant bit of the color intensity value
to be 0, and the least n−1 bits to be all 1. For example, assume that the color tuple of the pixel at coordinate(0,0) is
(41, 84, 163). Therefore,

R[0][0] = 41;
G[0][0] = 84;
B[0][0] = 163;

In binary representation, the color tuple will be:

6

http://en.wikipedia.org/wiki/Posterization

[0] [0] = 001010012 ;
[0] [0] = 010101002 ;
[0] [0] = 101000112 ;

Fig. 3 shows the operation for posterize for different least significant bits of the intensities for the red, green, and blue
channels. As illustrated in Fig. 3(a), in order to posterize the least 6 significant bits of the red intensity, we set the 6th
bit to be 0, and the 1st to the 5th bits to be 1s. Similarly in Fig. 3(b), to posterize the least 5 significant bits of the
green intensity, we set the 5th bit to be 0, and the 1st to the 4th bits to be 1s; and in Fig. 3(c), to posterize the least 4
significant bits of the blue intensity, we set the 4th bit to be 0, and the 1st to the 3th bits to be 1s.

!" !" #" !" #" !" !" #" !" !" !" #" #" #" #" #"

!"#$%&'$()'$*#+$,#+$-#+$.#+$/#+$!"#$%&'$()'$*#+$,#+$-#+$.#+$/#+$

(a) Posterize the least 6 significant bits of the red channel for pixel(0,0)

!" #" !" #" !" #" !" !" !" #" !" !" #" #" #" #"

!"#$%&'$()'$*#+$,#+$-#+$.#+$/#+$!"#$%&'$()'$*#+$,#+$-#+$.#+$/#+$

(b) Posterize the least 5 significant bits of the green channel for pixel(0,0)

!" #" !" #" #" #" !" !" !" #" !" #" #" !" !" !"

!"#$%&'$()'$*#+$!"#$%"#$&"#$'"#$()"$*+,$-.,$/"#$!"#$%"#$&"#$'"#$

(c) Posterize the least 4 significant bits of the blue channel for pixel(0,0)

Figure 3: The example of posterizing the color channels.

Function Prototype: You need to define and implement the following function to do this DIP.

/* Posterize the image */
void Posterize(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT],
unsigned int rbits,
unsigned int gbits,
unsigned int bbits);

Here, rbits, gbits, and bbits specify the number of least significant bits that need to be posterized. Since the size of
unsignedchar variable is 8 bits, the valid range of rbits, gbits, and bbits will be 1 to 8.
HINT: You will need to use bitwise operators, e.g. ‘&’, ‘<<’, ‘>>’, ‘|’ for this operation.

7

(a) Image without posterization (b) Image with posterization, where rbits = 7, gbits = 7, bbits = 7

Figure 4: The image and its posterized counterpart.

Fig. 4 shows an example of our posterized image. Once user chooses this option, your program’s output should look
like:

please make your choice: 13
Enter the number of posterization bits for R channel (1 to 8): 7
Enter the number of posterization bits for G channel (1 to 8): 7
Enter the number of posterization bits for B channel (1 to 8): 7
"Posterize" operation is done!

Save the image with name ’posterize’ after this step.

1.7 Test all functions
Finally, you are going to complete the AutoTest() function to test all the functions. In this function, you are going to
call DIP and advanced functions one by one and save the results. The function is for the designer to quickly test the
program, so you should supply all necessary parameters when testing.
Please note that AddBorder and MotionBlur should only be included in the test all functions if you actually implement
them.
The function should look like:

void AutoTest(unsigned char R[WIDTH][HEIGHT], unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT])

{
char fname[SLEN] = "HSSOE";
char sname[SLEN];

LoadImage(fname, R, G, B);
Negative (R, G, B) ;
SaveImage("negative", R, G, B) ;
printf("Negative tested!\n\n");

LoadImage(fname, R, G, B);
ColorFilter(R, G, B, 190, 100, 150, 60, 0, 0, 255);
SaveImage("colorfilter", R, G, B);
printf("Color Filter tested!\n\n");

8

LoadImage(fname, R, G, B);
AddBorder(R, G, B, "black", 64) ;
SaveImage("black", R, G, B) ;
printf("Border tested!\n\n");

...

LoadImage(fname, R, G, B);
Noise(30, R, G, B) ;
SaveImage("noise", R, G, B) ;
printf("Noise tested!\n\n");

LoadImage(fname, R, G, B);
Sharpen(R, G, B) ;
SaveImage("sharpen", R, G, B) ;
printf("Sharpen tested!\n\n");

LoadImage(fname, R, G, B);
Posterize(R, G, B, 7, 7, 7) ;
SaveImage("posterize", R, G, B) ;
printf("Posterize tested!\n\n");

LoadImage(fname, R, G, B);
MotionBlur(R, G, B) ;
SaveImage("blur", R, G, B) ;
printf("MotionBlur tested!\n\n");

}

Please implement the AutoTest() function in Photolab.c. Since the AutoTest() function will call the functions in the
DIPs.c and Advanced.c modules, please include the header files properly. Also, be sure to adjust your Makefile for
proper dependencies.

1.7.1 Motion Blur: Bonus

Any kind of blur is essentially making every pixel more similar to those around it. In a horizontal blur, we can average
each pixel with those in a specific direction, which gives the illusion of motion.
For this program, we will calculate each new pixel’s value as half of its original value. The other half is averaged from
a fixed number of pixels to the right. This fixed number can be called the bluramount. The larger the value, the
more blurring that will occur.

This is applied for the red, green, and blue intensity of each pixel.

You must also ensure you dont access pixels off the bounds of the image. For example, the third pixel from the right
should only average itself (half weight), and the next two (at a quarter weight each).

For this program, set the bluramount to 50.

Function Prototype: You need to define and implement the following function to do this DIP.

/* Make a blurred image*/
void MotionBlur(int BlurAmount,

unsigned char R[WIDTH][HEIGHT],
unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

9

(a) Original image (b) blurred image with motion blur=50

Figure 5: An image and its motion blur.

Here, BlurAmount specifies the percentage of blur in the image.
Figure 5 shows an example of this operation where blouramount is 50. Once the user chooses this option, your
program’s output should look like this:

Please make your choice: 14
Please input blur amount: 50
"motion blur" operation is done!

Save the image with name ’blur’ after this step.

1.8 Support for the DEBUG mode
In C programs, macros can be defined as preprocessing directives. Please define a macro named ”DEBUG” in your
source code to enable / disable the messages shown in the AutoTest() function.

When the macro is defined, the main menu will not appear, your program executes only the function AutoTest() and
finishes afterwards. The messages in the AutoTest() show up. If the macro is not defined, the program will execute
in its regular fashion and the main menu will appear. The messages in the function AutoTest() will not show up. The
printf statements in the LoadImage() and SaveImage() function will stay.
Please decide in which function and in which module this ”DEBUG” macro needs to be added.

1.9 Extend the Makefile
For the Makefile, please

• extend it properly with the targets for your program with the new module: Advanced.c.

• generate two executable programs

1. PhotoLab with the user interactive menu and the DEBUG mode off.

2. PhotoLabTest without the user menu, but with only the AutoTest() function for testing, and turn the DE-
BUG mode on. Note that we can thus use the same source files to generate two different programs.

Define two targets to generate these two programs. Please use the ”-D” option for gcc to enable / disable the
DEBUG mode instead of defining the ”DEBUG” macro in the source code. You may need to define more targets
to generate the object files with different DEBUG modes.

10

2 Implementation Details

2.1 Function Prototypes
For this assignment, you need to define the following functions in Advanced.h:

/*** function declarations ***/

/* Add noise to image */
void Noise(int n,

unsigned char R[WIDTH][HEIGHT],
unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

/* Sharpen an image */
void Sharpen(unsigned char R[WIDTH][HEIGHT],
unsigned char G[WIDTH][HEIGHT],

unsigned char B[WIDTH][HEIGHT]);

/* Posterize the image */
void Posterize(unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT],
unsigned int rbits,
unsigned int gbits,
unsigned int bbits);

/* Motion blur */
void MotionBlur(int BlurAmount, unsigned char R[WIDTH][HEIGHT],

unsigned char G[WIDTH][HEIGHT],
unsigned char B[WIDTH][HEIGHT]);

You may want to define other functions as needed.

2.2 Global constants

The following global constants should be defined in Constants.h (please don’t change their names):

#define WIDTH 600 /* image width */
#define HEIGHT 400 /* image height */
#define SLEN 80 /* maximum length of file names */

Please make sure that you properly include this header file when necessary.

3 Budgeting your time
You have two weeks to complete this assignment, but we encourage you to get started early as there is a little more
work than for Assignment 2. We suggest you budget your time as follows:

• Week 1:

1. Decompose the program into different modules, i.e. PhotoLab.c, FileIO.c, FileIO.h, Constants.h, DIPs.c,
DIPs.h.

11

2. Create your own Makefile and use it to compile the program.
3. Create module Advanced.c, Advanced.h, and implement an initial advanced DIP function.

• Week 2:

1. Implement all the advanced DIP functions.
2. Implement the AutoTest() function.
3. Figure out how to enable/disable the DEBUG mode in the source code and add targets to the Makefile

accordingly.
4. Script the result of your programs and submit your work.
5. Bonus part

4 Script File
To demonstrate that your program works correctly, perform the following steps and submit the log as your script file:

1. Start the script by typing the command: script.

2. Compile and run PhotoLab by using your Makefile: type ’make clean’, then ’make’, then ’./PhotoLab’.

3. Choose ’Test all functions’ (The file names must be ’BlackNWhite’, ’Negative’, ’ColorFilter’, ’Edge’, ’Shuffle’,
’Vflip’, ’Vmirror’, ’Noise’, ’Sharpen’, ’Posterize’, and ’MotionBlur’ for the corresponding function).

4. Exit the PhotoLab.

5. Compile and run PhotoLabTest: type ’make PhotoLabTest’.

6. Test the dependencies in your Makefile: type ’touch Advanced.c’, then ’make PhotoLab’.

7. Stop the script by typing the command: exit.

8. Rename the script file to PhotoLab.script.

NOTE: make sure to use exactly the same names as shown in the above steps when saving modified images! The script
file is important, and will be checked in grading; you must follow the above steps to create the script file. Please don’t
open any text editor while scripting !!!

5 Submission
Use the standard submission procedure to submit the following files as the whole package of your program:

• PhotoLab.c

• PhotoLab.script

• FileIO.c

• FileIO.h

• Constants.h

• DIPs.c

• DIPs.h

• Advanced.c

• Advanced.h

• Makefile

• PhotoLab.txt

12

6 Grading
• DIP zoom: 15 points

• DIP sharpen: 15 points

• DIP posterize: 15 points

• Menu: 5 points

• Autotest: 5 points

• Decomposition 15 points

• Makefile: 30 points

• Bonus: 10 points

13

	Digital Image Processing
	Introduction
	Initial Setup
	Decompose the program into multiple modules
	Compile the program with multiple modules using static shared library
	Using 'make' and 'Makefile'
	Advanced DIP operations
	Add noise to an image
	Sharpen an image
	Bit Manipulations: Posterize an image

	Test all functions
	Motion Blur: Bonus

	Support for the DEBUG mode
	Extend the Makefile

	Implementation Details
	Function Prototypes
	 Global constants

	Budgeting your time
	Script File
	Submission
	Grading

