
EECS 22: Assignment 5

Prepared by: Tim Schmidt, Prof. Quoc-Viet Dang, Prof. Rainer Dömer

November 6th, 2017

Due Wednesday December 6th, 2017 at 6:00 pm

Contents
1 MovieLab (100 points) 1

1.1 Introduction . 1
1.2 Initial Setup . 2
1.3 Design the MovieLab Program . 3

1.3.1 The Image.c Module (Provided) . 3
1.3.2 The ImageList.c Module . 5
1.3.3 The Movie.c Module . 6
1.3.4 The MovieLab.c Module . 8

2 Bonus (10 points) 13

3 Build the Makefile 14

4 Implementation Details 14
4.1 Structure Definitions . 14
4.2 Function Prototypes . 15

5 Budgeting Your Time 16

6 Script File 17

7 Submission 17

8 Grading 18

1 MovieLab (100 points)
In this assignment you will learn how to design a program to take command-line arguments into account and how to
design a linked list. The program MovieLab will be developed to perform digital image processing (DIP) operations
on an input movie. A movie is basically a sequence of images called frames with the same size. You will be asked to
load the frames of the movie, design a linked list of images to represent the movie in your program, and then use the
DIP functions to perform image processing operations on the movie frames.

1.1 Introduction
A movie is basically a sequence of images with different contents but same fixed size. Playing a movie is actually
showing the images one after another at a certain rate, i.e. fps (frames per second). Each image in the movie is the
same as what we have learned in the previous assignments. It is essentially a two-dimensional image, which can be
represented in C by an array of pixels. A pixel is still the smallest unit of an image.

1

In this assignment, we will work on a movie with a fixed number of frames (146) and resolution (480× 270 pix-
els/frame), but your program should be able to handle other sizes as well. The color space of the images in the movie
is YUV format (http://en.wikipedia.org/wiki/YUV) instead of RGB.

In YUV format, the color of each pixel is still represented by 3 components, now referred to as Y channel, U channel
and V channel. Here, the Y channel represents the luminance of the color, while the U channel and the V channel
represent the chrominance of the color. Each channel for one pixel is still represented by an intensity value between 0
and 255. In order to utilize the DIP functions that handle the images using the RGB color space, conversion is needed
to change the YUV tuple into a RGB tuple for each pixel (Section 1.3.3). The YUV color space is very common for
video streams. As our input and output file both use the YUV color space, we need to convert each frame in the movie
from YUV to RGB right after loading the movie, and from RGB to YUV before saving the movie to the output file.

1.2 Initial Setup
Before you start working on this assignment, please do the following steps:

1. Create the directory hw5 for this assignment, and change your current directory to hw5 by using these com-
mands:

mkdir hw5
cd hw5

2. Copy the following files from the shared folder:

cp ˜eecs22/public/hw5/Constants.h .
cp ˜eecs22/public/hw5/DIPs.h .
cp ˜eecs22/public/hw5/DIPs.c .
cp ˜eecs22/public/hw5/FileIO.h .
cp ˜eecs22/public/hw5/FileIO.c .
cp ˜eecs22/public/hw5/Image.c .
cp ˜eecs22/public/hw5/Image.h .
cp ˜eecs22/public/hw5/ImageList.c .
cp ˜eecs22/public/hw5/ImageList.h .
cp ˜eecs22/public/hw5/Makefile .
cp ˜eecs22/public/hw5/Movie.c .
cp ˜eecs22/public/hw5/Movie.h .
cp ˜eecs22/public/hw5/MovieLab.c .
cp ˜eecs22/public/hw5/watermark.ppm .

All the files listed above will be available in ∼eecs22/public/hw5/ after the deadline of Assignment 4.

3. Create a symbolic link to the input movie stream file from the eecs22 account on the zuma or crystalcove server.

ln -s ˜eecs22/public/hw5/mouse.yuv

Here, mouse.yuv is a symbolic link to the input movie file in our eecs22 account. Since we have space limitation
for each account on the servers, it is helpful to save disk space for each account by sharing the read-only input
file.

We will use the mouse.yuv file as the test input stream for this assignment. Once a movie operation is done, you can
save the output movie as name.yuv in your working directory by using the “-o” option.

You will need a YUV player to view the movie files. Our provided YUV player requires you to have X win-
dow support on your own machine where you use either PuTTY (Windows users) or Terminal (Mac Users) to

2

http://en.wikipedia.org/wiki/YUV

remote login to the Linux server. For Mac users, you need to have XQuartz installed to support the X window.
Please remember to add the “-X” option while using the “ssh” command (then macOS will ask you to install
XQuartz if it is missing). For Windows users, you need to install the X server first and set the configurations in
PuTTY with proper X11 forwarding. A free X server, Xming, for the Windows system is available from https:
//sourceforge.net/projects/xming/. The detailed instructions on PuTTY configuration is available
from http://www.geo.mtu.edu/geoschem/docs/putty_install.html.

With the X server running properly, you can use the following commands to play your movie files (.yuv):

cd hw5
˜eecs22/bin/yay -s WIDTHxHEIGHT filename.yuv

Specifically, you can play the test video stream by using:

˜eecs22/bin/yay -s 480x270 mouse.yuv

1.3 Design the MovieLab Program
In this assignment, we will design a data structure to represent the movie in a C program. Fig. 1 illustrates the double
linked list data structure for the movie in this assignment.

1.3.1 The Image.c Module (Provided)

In Assignment 4, we designed the Image.c module for the basic image manipulation functions. A struct IMAGE is
defined for the pixels in the RGB format. Also, image creation/deletion functions and pixel intensity Get/Set functions
are defined accordingly.

Since the data structure for the YUV format is almost the same as the RGB format, we define similar structure
and image manipulation functions for the YUV format. Now the structures and function signatures in Image.h look
like this:

typedef struct {
unsigned int W; /* Image width */
unsigned int H; /* Image height */
unsigned char *R; /* Pointer to the memory storing */

/* all the R intensity values */
unsigned char *G; /* Pointer to the memory storing */

/* all the G intensity values */
unsigned char *B; /* Pointer to the memory storing */

/* all the B intensity values */
} IMAGE;

/* Get the intensity value of the Red channel of pixel (x, y) */
/* in the RGB image */
unsigned char GetPixelR(const IMAGE *image, unsigned int x, unsigned int y);

/* Get the intensity value of the Green channel of pixel (x, y) */
/* in the RGB image */
unsigned char GetPixelG(const IMAGE *image, unsigned int x, unsigned int y);

/* Get the intensity value of the Blue channel of pixel (x, y) */
/* in the RGB image */
unsigned char GetPixelB(const IMAGE *image, unsigned int x, unsigned int y);

/* Set the intensity value of the Red channel of pixel (x, y) */
/* in the RGB image with valueR */

3

https://sourceforge.net/projects/xming/
https://sourceforge.net/projects/xming/
http://www.geo.mtu.edu/geoschem/docs/putty_install.html

void SetPixelR(IMAGE *image, unsigned int x, unsigned int y,
unsigned char valueR);

/* Set the intensity value of the Green channel of pixel (x, y) */
/* in the RGB image with valueG */
void SetPixelG(IMAGE *image, unsigned int x, unsigned int y,

unsigned char valueG);

/* Set the intensity value of the Blue channel of pixel (x, y) */
/* in the RGB image with valueB */
void SetPixelB(IMAGE *image, unsigned int x, unsigned int y,

unsigned char valueB);

/* Allocate the memory space for the RGB image and the memory spaces */
/* for the RGB intensity values. Return the pointer to the RGB image. */
IMAGE *CreateImage(unsigned int width, unsigned int height);

/* Release the memory spaces for the RGB intensity values. */
/* Release the memory space for the RGB image. */
void DeleteImage(IMAGE *image);

typedef struct {
unsigned int W; /* Image width */
unsigned int H; /* Image height */
unsigned char *Y; /* Pointer to the memory storing */

/* all the Y intensity values */
unsigned char *U; /* Pointer to the memory storing */

/* all the U intensity values */
unsigned char *V; /* Pointer to the memory storing */

/* all the V intensity values */
} YUVIMAGE;

/* Get the intensity value of the Y channel of pixel (x, y) */
/* in the YUV image */
unsigned char GetPixelY(const YUVIMAGE *YUVimage, unsigned int x, unsigned int y);

/* Get the intensity value of the U channel of pixel (x, y) */
/* in the YUV image */
unsigned char GetPixelU(const YUVIMAGE *YUVimage, unsigned int x, unsigned int y);

/* Get the intensity value of the V channel of pixel (x, y) */
/* in the YUV image */
unsigned char GetPixelV(const YUVIMAGE *YUVimage, unsigned int x, unsigned int y);

/* Set the intensity value of the Y channel of pixel (x, y) */
/* in the YUV image with valueY */
void SetPixelY(YUVIMAGE *YUVimage, unsigned int x, unsigned int y,

unsigned char valueY);

/* Set the intensity value of the U channel of pixel (x, y) */
/* in the YUV image with valueU */
void SetPixelU(YUVIMAGE *YUVimage, unsigned int x, unsigned int y,

unsigned char valueU);

4

/* Set the intensity value of the V channel of pixel (x, y) */
/* in the YUV image with valueV */
void SetPixelV(YUVIMAGE *YUVimage, unsigned int x, unsigned int y,

unsigned char valueV);

/* Allocate the memory space for the YUV image and the memory spaces */
/* for the YUV intensity values. Return the pointer to the YUV image. */
YUVIMAGE *CreateYUVImage(unsigned int width, unsigned int height);

/* Release the memory spaces for the YUV intensity values. */
/* Release the memory space for the YUV image. */
void DeleteYUVImage(YUVIMAGE *YUVimage);

1.3.2 The ImageList.c Module

Next we are going to design a double-linked list to store the frames (images) for the movie and keep them in the correct
order.

As discussed in Lecture 20 and Lecture 21, a double-linked list is a data structure that consists of a set of sequentially
linked records called entries. Each entry contains two fields, called links, that are references to the previous (Prev)
and to the next (Next) entry in the sequence of entries. The first and last entries’ Prev and Next in the list point to the
terminator NULL.
The Prev link of the first list element point to the terminator NULL. Recpectively, the Next link of the last list element
points to NULL.

Please modify the module ImageList.c (with a header file ImageList.h) to your MovieLab program.

In this module, define the following two structures:

• The structure for the image list entry IENTRY:

typedef struct ImageEntry IENTRY;
typedef struct ImageList ILIST;

struct ImageEntry {
ILIST *List; /* Pointer to the list which this entry belongs to */
IENTRY *Next; /* Pointer to the next entry, or NULL */
IENTRY *Prev; /* Pointer to the previous entry, or NULL */
IMAGE *RGBImage; /* Pointer to the RGB image, or NULL */
YUVIMAGE *YUVImage; /* Pointer to the YUV image, or NULL */

};

Note that either the RGBImage pointer or the YUVImage pointer will be NULL at any time. The YUVImage
pointer will be valid (and RGBImage is NULL) when loading and saving the movie file, and the RGBImage
pointer is in use (so YUVImage is NULL) when DIP operations take place. Please make sure that you free the
memory space pointed to by the unused pointer.

• The structure for the image list ILIST:

struct ImageList {
unsigned int Length; /* Length of the list */
IENTRY *First; /* Pointer to the first entry, or NULL */
IENTRY *Last; /* Pointer to the last entry, or NULL */

5

};

In the same module, define the following double-linked list functions:

/* Create a new image list */
ILIST *CreateImageList(void);

/* Delete an image list (and all entries) */
void DeleteImageList(ILIST *list);

/* Insert a RGB image to the image list at the end */
void AppendRGBImage(ILIST *list, IMAGE *RGBimage);

/* Insert a YUV image to the image list at the end */
void AppendYUVImage(ILIST *list, YUVIMAGE *YUVimage);

/* Crop an image list */
void CropImageList(ILIST *list, unsigned int start, unsigned int end);

/* Fast forward an image list */
void FastImageList(ILIST *list, unsigned int factor);

/* Reverse an image list */
void ReverseImageList(ILIST *list);

Note: Please refer to the slides of Lecture 19 and 20 for an example of implementing a double-linked list.

1.3.3 The Movie.c Module

Please modify the module Movie.c (with a header file Movie.h) to handle basic operations on the movie.

• The MOVIE struct: We will use a struct type to aggregate all the information of one movie. Please define the
following struct in Movie.h:

/* the movie structure */
typedef struct {

ILIST *Frames; /* Pointer to the frame list */
} MOVIE;

• Define the following functions for basic movie operations. Please use the following function prototypes (in
Movie.h) and define the functions properly (in Movie.c)

/* Allocate the memory space for the movie and the memory space */
/* for the frame list. Return the pointer to the movie. */
MOVIE *CreateMovie(void);

/* Release the memory space for the frame list. */
/* Release the memory space for the movie. */
void DeleteMovie(MOVIE *movie);

/* Convert a YUV movie to a RGB movie */
void YUV2RGBMovie(MOVIE *movie);

6

/* Convert a RGB movie to a YUV movie */
void RGB2YUVMovie(MOVIE *movie);

MOVIE

Frames

ImageList

Length

First Last

ImageEntry

List

Next

Prev

RGBImage

YUVImage

ImageEntry

List

Next

Prev

RGBImage

YUVImage

ImageEntry

List

Next

Prev

RGBImage

YUVImage

ImageEntry

List

Next

Prev

RGBImage

YUVImage

YUVIMA

Width

Height

Y

U

V

IMAGE

Width

Height

R

G

B

YUVIMA

Width

Height

Y

U

V

IMAGE

Width

Height

R

G

B

YUVIMA

Width

Height

Y

U

V

IMAGE

Width

Height

R

G

B

YUVIMA

Width

Height

Y

U

V

IMAGE

Width

Height

R

G

B

Figure 1: Double Linked List for the Movie

• Conversion between YUV and RGB:
The conversion between the YUV format (used by many image and movie compression methods) and the RGB
format (used by many hardware manufacturers) can be done by the following formulas. They show how to
compute a pixel’s values in one format from the pixel values in the other format.

Please use the following formulas for the YUV2RGBMovie and RGB2YUVMovie functions.

– Conversion from RGB to YUV:

Y = clip(((66 * R + 129 * G + 25 * B + 128) >> 8) + 16)
U = clip(((-38 * R - 74 * G + 112 * B + 128) >> 8) + 128)
V = clip(((112 * R - 94 * G - 18 * B + 128) >> 8) + 128)

– Conversion from YUV to RGB:

7

C = Y - 16
D = U - 128
E = V - 128
R = clip((298 * C + 409 * E + 128) >> 8)
G = clip((298 * C - 100 * D - 208 * E + 128) >> 8)
B = clip((298 * C + 516 * D + 128) >> 8)

Here, clip() denotes clipping a value to the range of 0 to 255 (saturated arithmetic). More specifically,

clip(x) = x, if 0 <= x <= 255;
clip(x) = 0, if x < 0;
clip(x) = 255, if x > 255.

NOTE: Use type int for the variables in the calculation.

1.3.4 The MovieLab.c Module

Extend the MovieLab.c template as the top module of the MovieLab program.

• Support for command-line arguments:
The C language provides a method to pass arguments to the main() function when executing the program. This
is typically accomplished by specifying arguments on the operating system command line (console).

Here, the prototype for main() looks like:

int main(int argc, char *argv[])
{

...
}

There are two parameters in the main() function. The first parameter (int argc) is the number of items on the
command line, including the executable name and all the arguments. Each argument on the command line is
separated by one or more spaces, and the operating system places each argument directly into its own null-
terminated string. The second parameter (char *argv[]) of main() is an array of pointers to the character strings
containing each argument.

Please add support for command-line arguments to the MovieLab.c program. The following options should
be supported:

– -i <file> to provide the input <file> name

– -o <file> to provide the output <file> name

– -f <framenum> to determine how many frames are read from the input stream

– -s <WIDTHxHEIGHT> to set the resolution of the input stream (WIDTHxHEIGHT)

– -aging to activate the aging filter

– -hflip to activate horizontal flip

– -edge to activate the edge filter

– -crop <start-end> to crop the movie frames from <start> to <end>

– -fast <factor> to fast forward the movie by <factor> (>= 1)

– -reverse to reverse the frame order of the input movie

– -watermark <file> to add a watermark from <file> to every movie frame

– -spotlight <radius> to spotlight a circle of <radius> on every movie frame

8

– -zoom (BONUS) to zoom in and out the input movie

– -h to display this usage information

The MovieLab.c template file contains the sample code for the support of “-i”, “-o” and “-h” options. Please
extend the code accordingly to support the rest of the options.

NOTE: The MovieLab program can perform multiple operations in an execution. If the user gives more than
one option, please perform the selected options in the following order: “-aging”, “-hflip”, “-edge”, “-crop”,
“-fast”, “-reverse”, “-watermark”, “-spotlight”, and then “-zoom”.

The “-i”, “-o”, “-f”, “-s” options are mandatory to MovieLab with an exception when the user just wants to see
the usage information (option “-h”). If any of the mandatory command-line argument are missing, you must
show a proper warning messages, print the information (as with -h), and terminate the execution of MovieLab.
If any set of parameters is incomplete, you must show a proper warning message. For instance, ./MovieLab
-s 480x270 -i mouse.yuv -o new.yuv -f 146 -fast has the missing <factor> argument.

In order to get two integer values for the “-s” option, please use the following piece of code (assume that the ith
command-line argument contains these two values):

unsigned int width, height;
if (sscanf(argv[i], "%ux%u", &width, &height) == 2) {

/* input is correct */
/* the image width is stored in width */
/* the image height is stored in height */

} else {
/* input format error */

}

You can search online for the synopsis and description of the sscanf() function. Basically, this function reads
formatted data from a character string and returns the number of items in the argument list successfully filled.

If you run the MovieLab with the “-h” option, you have the following output.

% ./MovieLab -h

Usage: MovieLab -i <file> -o <file> -f <framenum> -s <WIDTHxHEIGHT> [options]
Options:
-aging Activate the aging filter on every movie frame
-hflip Activate horizontal flip on every movie frame
-edge Activate the edge filter on every movie frame
-crop <start-end> Crop the movie frames from <start> to <end>
-fast <factor> Fast forward the movie by <factor> (>= 1)
-reverse Reverse the frame order of the input movie
-watermark <file> Add a watermark from <file> to every movie frame
-spotlight <radius> Spotlight the fade in and fade out
-zoom Zoom in and out the input movie
-h Display this usage information

Otherwise, we need to run the MovieLab with proper information for the movie and operation options, e.g:

% ./MovieLab -i mouse.yuv -o out.yuv -f 146 -s 480x270 -aging
The movie file mouse.yuv has been read successfully!
Operation Aging is done!
The movie file out.yuv has been written successfully!
146 frames are written to the file out.yuv in total.

9

• Load and save movie files:
We have provided some file I/O functions definitions in the MovieLab.c module. The function signatures for the
file I/O functions are:

– YUVIMAGE* LoadOneFrame(const char* fname, int n, unsigned int width, unsigned height)
loads the movie file with name fname.yuv, and returns the pointer to a YUVIMAGE struct which contains
the color intensities for channel Y, U and V of the n-th frame. The frame index is 0 based.

– int SaveMovie(const char *fname, MOVIE *movie)
opens the movie file with name fname.yuv, and saves the movie frames into fname.yuv.

You have to implement the function LoadMovie with the following function signature.

– MOVIE *LoadMovie(const char *fname, int frameNum, unsigned int width, unsigned height)
loads a number frameNum of frames from the movie file with name fname.yuv, and returns the pointer to
the movie struct.

Use the functions LoadOneFrame() and AppendYUVImage() to implement LoadMovie. Inside LoadMovie()
which gets the content of the input movie file, you need to first allocate the memory space for the movie struct
by calling CreateMovie(). The LoadOneFrame() function will take the file name of the video, the resolution of
the video, and the frame index to be read as pass-in arguments, and return a YUVIMAGE pointer to the memory
space storing the input frame. At the end of your program, you need to free these memory spaces to avoid
memory leakage.

• Perform DIP operations on the movie:
We will add support for 8 DIP operations on the movie file:

– Create an aging movie (the ”-aging” option):
Traverse the frame list of the movie, and perform Aging() operation on each frame image. The execution
of our program should be like:

% ./MovieLab -i mouse.yuv -o out.yuv -s 480x270 -f 146 -aging
The movie file mouse.yuv has been read successfully!
Operation Aging is done!
The movie file out.yuv has been written successfully!
146 frames are written to the file out.yuv in total.

– Flip the movie horizontally (the ”-hflip” option):
Traverse the frame list of the movie, and perform HFlip() operation on each frame image. The execution
of our program should be like:

% ./MovieLab -i mouse.yuv -o out.yuv -s 480x270 -f 146 -hflip
The movie file mouse.yuv has been read successfully!
Operation HFlip is done!
The movie file out.yuv has been written successfully!
146 frames are written to the file out.yuv in total.

– Create a edge-detected movie (the ”-edge” option):
Traverse the frame list of the movie, and perform Edge() operation on each frame image. The execution
of our program should be like:

% ./MovieLab -i mouse.yuv -o out.yuv -s 480x270 -f 146 -edge
The movie file mouse.yuv has been read successfully!
Operation Edge is done!
The movie file out.yuv has been written successfully!
146 frames are written to the file out.yuv in total.

– Crop frames from the movie (the ”-crop” option):
Perform the CropImageList() operation on the ImageList in the movie structure. Your program should print

10

Figure 2: Cropping Operation

the number of frames after cropping. Fig. 2 illustrates the concept of cropping operation. In this example,
the program takes frame 71 to frame 140 and generates a new movie with 70 frames.
NOTE: The frame index in the movie starts from 0, and the two frames indexed by start and end are kept
in the new movie.

The execution of our program should be like:

% ./MovieLab -i mouse.yuv -o out.yuv -s 480x270 -f 146 -crop 21-30
The movie file mouse.yuv has been read successfully!
Operation Crop is done! New number of frames is 10.
The movie file out.yuv has been written successfully!
10 frames are written to the file out.yuv in total.

– Create a fast forwarded movie (the ”-fast” option):
Perform the FastImageList() operation on the ImageList in the movie structure with the given fast forward
factor. Note that your program should also print the number of frames after fast forwarding. Fig. 3 illus-
trates the concept of fast forward operation. In this example of fast forwarding by 3, the program will take
every third frame from the original one to generate the new movie.

The execution of our program should be like:

% ./MovieLab -i mouse.yuv -o out.yuv -s 480x270 -f 146 -fast 3
The movie file mouse.yuv has been read successfully!
Operation Fast Forward is done! New number of frames is 24.
The movie file out.yuv has been written successfully!
24 frames are written to the file out.yuv in total.

Figure 3: Fast Forwarding Operation

11

– Reverse the frame order in the movie (the ”-reverse” option):
Perform the ReverseImageList() operation on the ImageList in the movie structure. The execution of our
program should be like:

% ./MovieLab -i mouse.yuv -o out.yuv -s 480x270 -f 146 -reverse
The movie file mouse.yuv has been read successfully!
Operation Reverse is done!
The movie file out.yuv has been written successfully!
146 frames are written to the file out.yuv in total.

– Add a watermark to each frame in the movie (the ”-watermark” option):
Traverse the frame list of the movie, and add a watermark to each frame image. The position of the water-
mark will be decided at run time by using the random number generator, and it stays at the same place for
15 consecutive frames. Afterwards, it will move to a new position. Note that the watermark can be at any
position in the frame image. You should use the random number generator to generate the coordinates of
the top left corner of the watermark image in the frame image. The coordinates can be any valid coordi-
nates in the frame image. Just ignore any part of the watermark image which is out of the boundary of the
frame image.

The execution of our program should be like:

% ./MovieLab -i mouse.yuv -o out.yuv -s 480x270 -f 146 -watermark watermark.ppm
The movie file mouse.yuv has been read successfully!
Operation Watermark is done!
The movie file out.yuv has been written successfully!
146 frames are written to the file out.yuv in total.

– Spotlight a fade in and fade out circle on the first 40 and the last 20 frames of the movie (the ”-spotlight”
option):
The spotlight operation adds a fade in and a fade out to the movie. Consequently, this operation can take
only place, if the movie has at least 60 frames. If the movie has less frames, you have to print an error
message and continue with the next operation. Fig. 4 and Fig. 5 show operation fade in and respectively
fade out.

...

Frame: 0

Radius: 0

Frame: 1

Radius: 7.06...

Frame: 2

Radius: 14.12...

Frame: 3

Radius: 21.18...

Frame: 39

Radius: 275.36...

Figure 4: Fade in of the first 40 frames of a movie with a frame size of 480x270 pixel

...

Frame: 145

Radius: 0

Frame: 144

Radius: 14.49...

Frame: 143

Radius: 28.98...

Frame: 142

Radius: 43.47...

Frame: 126

Radius: 275.36...

Figure 5: Fade out of the last 20 frames of a movie with a frame size of 480x270 pixel

The center of the spotlight is half of the width and half of the height of the image. Here, for any pixel that

12

is within the circle your program keeps its original intensity values. For all pixels that are out of the circle,
your program makes them black. The radius of the spotlight should increase linearly and start with 0 and
end with the maximal radius. Fig. 6 illustrates how to compute the maximal radius.

Width

Height
max
Radius

Figure 6: Measurements of an image and the maximal needed radius.

You have to implement the function IMAGE * Spotlight(IMAGE *image, int centerX, int
centerY, unsigned int radius) in the file DIPs.c.
The execution of our program should be like:

% ./MovieLab -i mouse.yuv -o out.yuv -s 480x270 -f 146 -spotlight
The movie file mouse.yuv has been read successfully!
Operation Spotlight is done!
The movie file out.yuv has been written successfully!
146 frames are written to the file out.yuv in total.

NOTE: Due to the space limitation for the account on the Linux server, please always use the same output file name,
i.e. out.yuv, when you test your program so as to save disk space.

For references, we put the output movie files from the above 8 operations (plus the Zoom operation from Section 2) in
the shared folder. You may compare your results with them visually.

˜eecs22/public/hw5/demo/aging.yuv
˜eecs22/public/hw5/demo/hflip.yuv
˜eecs22/public/hw5/demo/edge.yuv
˜eecs22/public/hw5/demo/crop.yuv
˜eecs22/public/hw5/demo/fast.yuv
˜eecs22/public/hw5/demo/reverse.yuv
˜eecs22/public/hw5/demo/watermark.yuv
˜eecs22/public/hw5/demo/spotlight.yuv
˜eecs22/public/hw5/demo/zoom.yuv

2 Bonus (10 points)
Extend the MovieLab program with an additional DIP operation (the ”-zoom” option) on the movie.

In the Zoom operation, your program traverses the frame list of the movie, and resizes each frame image and puts
the result in the center of the frame. For any remaining pixels in the frame, make them black. At the beginning of the
movie, the resize percentage is 0%, and then it increases by 2% per frame. When the resize percentage reaches 100%,
it then decreases by 2% per frame until 0. Afterwards, the percentage increases again. So a sequence of the resize
percentages will be: 0%,2%,4%,6%, ...,98%,100%,98%,96%, ...,4%,2%,0%,2%,4%, You can assume that the
resize percentage will always be an even number.

The execution of our program should be like:

13

% ./MovieLab -i mouse.yuv -o out.yuv -s 480x270 -f 146 -zoom
The movie file mouse.yuv has been read successfully!
Operation Zoom is done!
The movie file out.yuv has been written successfully!
146 frames are written to the file out.yuv in total.

3 Build the Makefile
Please create your own Makefile with at least the following targets:

• all: the dummy target to generate the executable program MovieLab.

• clean: the target to clean all the intermediate files, e.g. object files, the output .yuv file, and the executable
program.

• *.o: the target to generate the object file *.o from the C source code file *.c.

• MovieLab: the target to generate the executable program MovieLab.

4 Implementation Details
Here is a recap of all the structures and functions you need to implement in this assignment.

4.1 Structure Definitions
For this assignment, you need to define the following structures in ImageList.h:

typedef struct ImageEntry IENTRY;
typedef struct ImageList ILIST;

struct ImageEntry {
ILIST *List; /* Pointer to the list which this entry belongs to */
IENTRY *Next; /* Pointer to the next entry, or NULL */
IENTRY *Prev; /* Pointer to the previous entry, or NULL */
IMAGE *RGBImage; /* Pointer to the RGB image, or NULL */
YUVIMAGE *YUVImage; /* Pointer to the YUV image, or NULL */

};

struct ImageList {
unsigned int Length; /* Length of the list */
IENTRY *First; /* Pointer to the first entry, or NULL */
IENTRY *Last; /* Pointer to the last entry, or NULL */

};

The following structure in Movie.h:

/* the movie structure */
typedef struct {

ILIST *Frames; /* Pointer to the frame list */
} MOVIE;

14

4.2 Function Prototypes
For this assignment, you need to define the following functions in the ImageList.c module:

/* Create a new image list */
ILIST *CreateImageList(void);

/* Delete an image list (and all entries) */
void DeleteImageList(ILIST *list);

/* Insert a RGB image to the image list at the end */
void AppendRGBImage(ILIST *list, IMAGE *RGBimage);

/* Insert a YUV image to the image list at the end */
void AppendYUVImage(ILIST *list, YUVIMAGE *YUVimage);

/* Crop an image list */
void CropImageList(ILIST *list, unsigned int start, unsigned int end);

/* Fast forward an image list */
void FastImageList(ILIST *list, unsigned int factor);

/* Reverse an image list */
void ReverseImageList(ILIST *list);

The following functions in the Movie.c module:

/* Allocate the memory space for the movie and the memory space */
/* for the frame list. Return the pointer to the movie. */
MOVIE *CreateMovie(void);

/* Release the memory space for the frame list. */
/* Release the memory space for the movie. */
void DeleteMovie(MOVIE *movie);

/* Convert a YUV movie to a RGB movie */
void YUV2RGBMovie(MOVIE *movie);

/* Convert a RGB movie to a YUV movie */
void RGB2YUVMovie(MOVIE *movie);

The following functions in the MovieLab.c module:

/* Load the movie frames from the input file */
MOVIE *LoadMovie(const char *fname, int frameNum,

unsigned int width, unsigned height);

/* Main function */
int main(int argc, char *argv[]);

The DIP functions in the DIPs.c module:

/* Aging */
IMAGE *Aging(IMAGE *image);

15

/* Horizontal flip */
IMAGE *HFlip(IMAGE *image);

/* Edge detection */
IMAGE *Edge(IMAGE *image);

/* Add a watermark to an image */
IMAGE *Watermark(IMAGE *image, const IMAGE *watermark,

unsigned int topLeftX, unsigned int topLeftY);

/* Spotlight */
IMAGE *Spotlight(IMAGE *image, int centerX, int centerY, unsigned int radius);

/* Zoom an image */
IMAGE *Zoom(IMAGE *image, unsigned int percentage);

You can reuse some functions (Aging(), HFlip() and Edge()) from the previous assignments. Then you need to define
other functions in DIPs.c as well.

5 Budgeting Your Time
You have two weeks to complete this assignment, but we encourage you to get started early. We suggest you budget
your time as follows:

• Week 1:

1. Build Makefile.

2. Complete CreateImageList, DeleteImageList, AppendRGBImage and AppendYUVImage in ImageList.c
and ImageList.h.

3. Complete CreateMovie, DeleteMovie, YUV2RGBMovie and RGB2YUVMovie in Movie.c and Movie.h.

4. Complete LoadMovie in MovieLab.c.

5. Copy previous DIP functions (Aging, HFlip and Edge) to DIPs.c and DIPs.h, and adjust them if necessary.

6. Add the command-line argument support in the main function.

7. Backup your work.

Now you can compile and run your MovieLab to test the basic DIP operations, provided that you have empty
function definitions for all undefined functions. Also, run your program in Valgrind to detect any memory leaks
and invalid memory accesses. Fix any problem reported by Valgrind.

• Week 2:

1. Complete ReverseImageList, FastImageList and CropImageList in ImageList.c and ImageList.h.

2. Complete the remaining DIP functions (Watermark, Spotlight and Zoom) in DIPs.c and DIPs.h.

3. Use Valgrind to check memory usage. Fix the code if Valgrind complains about any errors or memory
leaks.

4. Script the result of your program and submit your work.

16

6 Script File
To demonstrate that your program works correctly, perform the following steps and submit the log as your script file:

1. Start the script by typing the command: script

2. Compile MovieLab by using your Makefile

3. Run the program: % MovieLab -h

4. Run the program: % MovieLab -i mouse.yuv -o out.yuv -f 50 -s 480x270 -aging -hflip

5. Run the program: % MovieLab -i mouse.yuv -o out.yuv -f 50 -s 480x270 -edge

6. Run the program: % MovieLab -i mouse.yuv -o out.yuv -f 50 -s 480x270 -fast 3 -crop 10-40

7. Run the program: % MovieLab -i mouse.yuv -o out.yuv -f 50 -s 480x270 -reverse

8. Run the program: % MovieLab -i mouse.yuv -o out.yuv -f 50 -s 480x270 -watermark watermark

9. Run the program: % MovieLab -i mouse.yuv -o out.yuv -f 50 -s 480x270 -spotlight

10. Run the program: % MovieLab -i mouse.yuv -o out.yuv -f 146 -s 480x270 under the monitor of Valgrind

11. (Optional) Run the program: % MovieLab -i mouse.yuv -o out.yuv -f 100 -s 480x270 -zoom

12. Clean all the object files, output .yuv file and executable program by using your Makefile.

13. Stop the script by typing the command: exit.

14. Rename the script file to MovieLab.script.

NOTE: The script file is important, and will be checked in grading. You must follow the above steps to create the
script file. Do not open any text editor while scripting.

7 Submission
Only compilable submissions can get up 100 points. Not compilable submissions get at most 50 points! We compile
all submissions with -ansi -std=c99 -Wall. Warnings will reduce your points.

Go to the parent directory of your hw5 folder, and turn in your homework by running:
% ∼eecs22/bin/turnin.sh

Your hw5 folder should contain the following files as the whole package of your program:

• MovieLab.c

• MovieLab.script

• MovieLab.txt

• Movie.c

• Movie.h

• ImageList.c

• ImageList.h

• Image.c

• Image.h

17

• DIPs.c

• DIPs.h

• FileIO.c

• FileIO.h

• Constants.h

• Makefile

8 Grading
• Makefile (compilable, no warnings and errors): 10 points

• Support for command-line arguments: 15 points

• Struct ImageEntry, ImageList and related functions: 20 points

• Struct MOVIE and related functions: 10 points

• Watermark operation: 15 points

• Spotlight operation: 15 points

• All other operations and no valgrind errors: 15 points

• Bonus: 10 points

18

	MovieLab (100 points)
	Introduction
	Initial Setup
	Design the MovieLab Program
	The Image.c Module (Provided)
	The ImageList.c Module
	The Movie.c Module
	The MovieLab.c Module

	Bonus (10 points)
	Build the Makefile
	Implementation Details
	Structure Definitions
	Function Prototypes

	Budgeting Your Time
	Script File
	Submission
	Grading

