
EECS10: Comp. Methods in ECE Lecture 9

(c) 2013 R. Doemer 1

EECS 10: Computational Methods in 
Electrical and Computer Engineering

Lecture 9

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 2

Lecture 9.1: Overview

• Basic Computer Architecture
– Computer components

• Binary Data Representation
– Bits, bytes, and words

– Memory sizes

– Memory format

– Number systems

• Memory Organization
– Memory segmentation

– Objects in memory



EECS10: Comp. Methods in ECE Lecture 9

(c) 2013 R. Doemer 2

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 3

Basic Computer Architecture

• Essential Computer Components
– Central Processing Unit (CPU)

• e.g. Intel Pentium, Motorola PowerPC, Sun SPARC, ...
– Random Access Memory (RAM)

• storage for program and data, read and write access
– Read Only Memory (ROM)

• fixed storage for basic input/output system (BIOS)
– I/O Units

• Input/output interfaces connecting to peripherals

CPU RAM ROM I/OClock

Address Bus

Data Bus

I/O 
Busses

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 4

Binary Data Representation

• Data and instructions in a computer are represented
in binary format
– 1 bit (binary digit), 2 possible values

• 0 (false, “no”, power off, “empty”, ...)

• 1 (true, “yes”, power on, “filled”, ...)

– 1 byte = 8 bits (28 = 256 values)
• in C, type char equals one byte*

– 1 word = 4 bytes* (232 = 4294967296 values)
• in C, type int equals one word

• Memory size is measured in Bytes
– 1 KB = 1024 byte = 1 “kilo byte”

– 1 MB = 1024*1024 byte = 1 “mega byte”

– 1 GB = 1024*1024*1024 byte = 1 “giga byte”

– 1 TB = 10244 byte = 1 “tera byte” (*architecture dependent!)



EECS10: Comp. Methods in ECE Lecture 9

(c) 2013 R. Doemer 3

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 5

Binary Data Representation

• Memory is composed of addressable bytes
– Example:

1 KB of memory

– What is the value at
address 7?

...

2
1
0

3

6
5
4

7

10
9
8

11

1022
1021
1020

1023

7
7 6 5 4 3 2 1 0

= 0*27 + 1*26 + 0*25 + 0*24

+ 1*23 + 1*22 + 0*21 + 1*20

= 0*128+ 1*64 + 0*32 + 0*16
+ 1*8  + 1*4  + 0*2  + 1*1

= 64 + 8 + 4 + 1

= 77

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 6

Binary Data Representation

• Review: Number Systems
– DEC: Decimal numbers

• Base 10, digits 0, 1, 2, 3, ..., 9
• e.g. 157 = 1*102 + 5*101 + 7*100

– BIN: Binary numbers
• Base 2, digits 0, 1
• e.g. 100111012 = 1*27 + 0*26 + 0*25 + 1*24 + ... + 1*20

– OCT: Octal numbers
• Base 8, digits 0, 1, 2, 3, ..., 7
• e.g. 2358 = 2*82 + 3*81 + 5*80

– HEX: Hexadecimal numbers
• Base 16, digits 0, 1, 2, 3, ..., 9, A, B, C, ..., F
• e.g. 9D16 = 9*161 + 13*160



EECS10: Comp. Methods in ECE Lecture 9

(c) 2013 R. Doemer 4

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 7

Binary Data Representation

• Review: Number Systems
DEC
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

BIN
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

OCT
0
1
2
3
4
5
6
7
10
11
12
13
14
15
16
17

HEX
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 8

Binary Data Representation

• Review: Number Systems (signed/unsigned)
UDEC

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

BIN
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

OCT
0
1
2
3
4
5
6
7
10
11
12
13
14
15
16
17

HEX
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

SDEC
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1



EECS10: Comp. Methods in ECE Lecture 9

(c) 2013 R. Doemer 5

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 9

Binary Data Representation

• Review: Number Systems
– Signed representation: two’s complement

• to obtain the negative of any number in binary 
representation, ...

– ... invert all bits,

– ... and add 1

– Example: 4-bit two’s complement

UDEC
...
7
8
9

...

BIN
...
0111
1000
1001
...

OCT
...
7
10
11
...

HEX
...
7
8
9

...

SDEC
...
7
-8
-7
...

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 10

Memory Organization

• Memory Segmentation
– typical (virtual) memory layout

on processor with 4-byte words
and 4 GB of memory

– Stack
• grows and shrinks dynamically
• function call hierarchy
• stack frames with local variables

– Heap
• “free” storage
• dynamic allocation by the user

– Data segment
• global (and static) variables

– Program segment
• stores binary program code

– Reserved area for operating system

Stack

Reserved
for OS

Program
segment

Data
segment

Heap

0

ffff fffc



EECS10: Comp. Methods in ECE Lecture 9

(c) 2013 R. Doemer 6

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 11

Memory Organization

• Memory Segmentation
– typical (virtual) memory layout

on processor with 4-byte words
and 4 GB of memory

• Memory errors
– Out of memory

• Stack and heap collide

– Segmentation fault
• access outside allocated segments
• e.g. access to segment reserved for OS

– Bus error
• mis-aligned word access
• e.g. word access to an address

that is not divisible by 4

Stack

Reserved
for OS

Program
segment

Data
segment

Heap

0

ffff fffc

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 12

Objects in Memory

• Data in memory is organized as a set of objects
• Every object has ...

– ... a type (e.g. int, double, char[5])
• type is known to the compiler at compile time

– ... a value (e.g. 42, 3.1415, “text”)
• value is used for computation of expressions

– ... a size (number of bytes in the memory)
• in C, the sizeof operator returns the size of a variable or type

– ... a location (address in the memory)
• in C, the “address-of” operator (&) returns the address of an object

• Variables ...
– ... serve as identifiers for objects
– ... are bound to objects
– ... give objects a name



EECS10: Comp. Methods in ECE Lecture 9

(c) 2013 R. Doemer 7

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 13

Objects in Memory

• Example: Variable values, addresses, and sizes
int x = 42;
int y = 13;
char s[] = "Hello World!";

printf("Value   of x    is %d.\n", x);
printf("Address of x    is %p.\n", &x);
printf("Size    of x    is %u.\n", sizeof(x));
printf("Value   of y    is %d.\n", y);
printf("Address of y    is %p.\n", &y);
printf("Size    of y    is %u.\n", sizeof(y));
printf("Value   of s    is %s.\n", s);
printf("Address of s    is %p.\n", &s);
printf("Size    of s    is %u.\n", sizeof(s));
printf("Value   of s[1] is %c.\n", s[1]);
printf("Address of s[1] is %p.\n", &s[1]);
printf("Size    of s[1] is %u.\n", sizeof(s[1]));

EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 14

Stack...

...

Objects in Memory

• Example: Variable values, addresses, and sizes

Value   of x    is 42.
Address of x    is ffbefa4c.
Size    of x    is 4.
Value   of y    is 13.
Address of y    is ffbefa48.
Size    of y    is 4.
Value   of s    is Hello World!.
Address of s    is ffbefa38.
Size    of s    is 13.
Value   of s[1] is e.
Address of s[1] is ffbefa39.
Size    of s[1] is 1.

int x = 42;
int y = 13;
char s[] = "Hello World!";
...

ffbefa4c 42

ffbefa48 13

ffbefa44

‘H’‘e’‘l’‘l’

ffbefa40

‘o’‘ ’‘W’‘o’ffbefa3c

‘r’‘l’‘d’‘!’

ffbefa38

0


