
EECS 22: Advanced C Programming
Week 7

Mihnea Chirila

mchirila@uci.edu

11/10/2017

Outlines

• Introduction to Assignment 4

• Assignment Setup

• Dynamic Memory Allocation

• Modify Existing Functions

• New Image Processing Function - Crop

EECS 22 Week 7, Nov, 2017 (c) 2015 Guantao Liu 2

Assignment 4

• Digital Image Processing Program for varying

image size

– In Assignment 2 & 3, your DIP program could only

work with images of fixed size (600 x 400).

– Now, you need to redesign your program to

accommodate varying image sizes.

– The input image or the result image may differ in

size.

– Based on Assignment 3, you need to use new

image structure and pixel mapping functions in

your image processing operations.

• Due: Wednesday 11/22/2017 at 6:00pm

EECS 22 Week 7, Nov, 2017 (c) 2015 Guantao Liu 3

Assignment Setup

• Copy the following files to your directory:
mkdir hw4

cd hw4

cp ~eecs22/public/FileIO.h .

cp ~eecs22/public/FileIO.c .

cp ~eecs22/public/Test.c .

cp ~eecs22/public/Test.h .

cp ~eecs22/public/Image.h .

cp ~eecs22/public/HSSOE.ppm .

cp ~eecs22/public/watermark_template.ppm .

• Image.h: the header file for the definition of the new
image structure and declarations of the pixel mapping
functions

• FileIO.h & FileIO.c: new header file and source
file for File I/Os (for varying image sizes)

EECS 22 Week 7, Nov, 2017 (c) 2015 Guantao Liu 4

Assignment Setup

• In addition to the previous files, you also need to
reuse some of files in Assignment 3. You can copy
from your hw3/ or the shared folder:
cp ~eecs22/public/PhotoLab_v3.c .

cp ~eecs22/public/Constants.h .

cp ~eecs22/public/DIPs.h .

cp ~eecs22/public/DIPs.c .

cp ~eecs22/public/Advanced.h .

cp ~eecs22/public/Advanced.c .

cp ~eecs22/public/Makefile .

• You need to modify the existing DIP functions by
using the new pixel mapping functions (GetPixelR,
SetPixelR, and etc.) and implement four new
image processing functions (Crop, Resize,
Brightness&Contrast and Watermark).

EECS 22 Week 7, Nov, 2017 (c) 2015 Guantao Liu 5

Pointers in 1-D Memory Space

EECS 22 Week 7, Nov, 2017 (c) 2015 Guantao Liu 6

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

• In previous assignments, we always use three 2-D unsigned

char arrays to store the intensity values of the image.

• In this assignment, we will use three 1-D memory space

since the image size is unknown until we run the program.

• 2-D Array Index 1-D Memory Index

(0, 0) 0 + 0 * 10 = 0

(9, 4) 9 + 4 * 10 = 49

(6, 4) 6 + 4 * 10 = 46

(x, y) x + y * WIDTH

IMAGE struct

typedef struct {

unsigned int W;

unsigned int H;

unsigned char *R;

unsigned char *G;

unsigned char *B;

} IMAGE;

• Width & Height are the width and height of the
image.

• R, G and B are pointers to memory storing R, G
and B intensity values.

• Use malloc() and free() to allocate and
deallocate the memory space pointed to by R, G
and B.

EECS 22 Week 7, Nov, 2017 (c) 2015 Guantao Liu 7

Dynamic Memory Allocation

#include <stdlib.h>
void *malloc(size_t size);

– Allocate size bytes of memory space on the heap
• Allocated memory space is uninitialized.

– Returns a pointer to the memory (address of first byte)
• Return type is void*, meaning “pointer to unknown type”

• Return value is NULL if requested size could not be allocated

void free(void *p);

– Deallocates the memory at address p
• Argument p must be a pointer to space allocated by
malloc()

• Does nothing if p is NULL

• Advise:
– Always check the return value of malloc()!

– Always use malloc() and free() in pairs!

EECS 22 Week 7, Nov, 2017 (c) 2015 Guantao Liu 8

ImageFunctions

unsigned char GetPixelR(IMAGE *image, unsigned int x,

unsigned int y);

unsigned char GetPixelG(IMAGE *image, unsigned int x,

unsigned int y);

unsigned char GetPixelB(IMAGE *image, unsigned int x,

unsigned int y);

void SetPixelR(IMAGE *image, unsigned int x, unsigned int y,

unsigned char r);

void SetPixelG(IMAGE *image, unsigned int x, unsigned int y,

unsigned char g);

void SetPixelB(IMAGE *image, unsigned int x, unsigned int y,

unsigned char b);

• Implement these functions to get and set the intensity values of
each pixel in the image in Image.c

EECS 22 Week 7, Nov, 2017 (c) 2015 Guantao Liu 9

ImageFunctions

/* Return the image's width in pixels */

unsigned int ImageWidth(IMAGE *image);

/* Return the image's height in pixels */

unsigned int ImageHeight(IMAGE *image);

• Implement these functions to get the Width and Height values of
the image in Image.c.

• Use assertions to make sure the input is valid.

• Extend Makefile to generate Image.o and add Image.o

when generating PhotoLab and PhotoLabTest.

EECS 22 Week 7, Nov, 2017 (c) 2015 Guantao Liu 10

File I/Os

IMAGE *LoadImage(const char *fname);
int SaveImage(const char *fname,

IMAGE *image);

• LoadImage reads the file fname.ppm, creates the
memory space of the image (R, G and B), stores the color
intensities in the memory space, and returns the image
pointer (or NULL if error happens).

• SaveImage saves the color intensities to the file
fname.ppm and deallocate the memory space of the
image.

• The above two functions depends on the following two
functions to handle memory allocation and deallocation,
which you need to implement in Image.c:
– IMAGE *CreateImage(unsigned int Width, unsigned
int Height);

– void DeleteImage(IMAGE *image);

EECS 22 Week 7, Nov, 2017 (c) 2015 Guantao Liu 11

Modify Existing Function - BlackNWhite

• void BlackNWhite(unsigned char R[WIDTH][HEIGHT], unsigned

char G[WIDTH][HEIGHT], unsigned char B[WIDTH][HEIGHT])

for (y = 0; y < HEIGHT; y++)

{

for (x = 0; x < WIDTH; x++)

{

tmp = (R[x][y] + G[x][y] + B[x][y]) / 3;

R[x][y] = G[x][y] = B[x][y] = tmp;

}

}

EECS 22 Week 7, Nov, 2017 (c) 2015 Guantao Liu 12

• IMAGE *BlackNWhite(IMAGE *image)

for (y = 0; y < ImageHeight(image); y++)

{

for (x = 0; x < ImageWidth(image); x++)

{

tmp = (GetPixelR(image, x, y) + GetPixelG(image, x, y) +

GetPixelB(image, x, y)) / 3;

SetPixelR(image, x, y, tmp);

SetPixelG(image, x, y, tmp);

SetPixelB(image, x, y, tmp);

}

}

Modify Existing Functions

• IMAGE *BlackNWhite(IMAGE *image);

• IMAGE *Negative(IMAGE *image);

• IMAGE *ColorFilter(IMAGE *image, int target_r, int
target_g, int target_b, int threshold,
int replace_r, int replace_b, int replace_b);

• IMAGE *Edge(IMAGE *image);

• IMAGE *Shuffle(IMAGE *image);

• IMAGE *VFlip(IMAGE *image);

• IMAGE *VMirror(IMAGE *image);

• IMAGE *AddBorder(IMAGE *image,
char color[SLEN], int border_width);

• IMAGE *AddNoise(int n, IMAGE *image);

• IMAGE *Sharpen(IMAGE *image);

• IMAGE *Posterize(IMAGE *image,
unsigned int rbits, unsigned int gbits, unsigned int

bbits);

• IMAGE *MotionBlur(int bluramount, IMAGE *image);

• void AutoTest(IMAGE *image);

EECS 22 Week 7, Nov, 2017 (c) 2015 Guantao Liu 13

Main Menu

1: Load a PPM image

2: Save an image in PPM and JPEG format

3: Change a color image to Black and White

4: Make a negative of an image

5: Color filter an image

6: Sketch the edge of an image

7: Shuffle an image

8: Flip an image vertically

9: Mirror an image vertically

10:Add border to an image

11:Add noise to an image

12:Sharpen an image

13:Posterize an image

14:Blur an image

15:Crop

16:Resize

17:Brightness and Contrast

18:Watermark

19:Test all functions

20:Exit

Please make your choice:

EECS 22 Week 7, Nov, 2017 (c) 2015 Guantao Liu 14

Assignment 2

Assignment 3

Assignment 4

Crop

• IMAGE *Crop(IMAGE *image, unsigned int x,

unsigned int y, unsigned int W, unsigned int H);

• Crop an image starting from (x, y) and the crop width and

height are W and H respectively.

• Only crop up to the maximum length of the original image.

EECS 22 Week 7, Nov, 2017 (c) 2015 Guantao Liu 15

