
1

EECS 222: Embedded System Modeling
Spring 2017

Assignment 5

Posted: May 8, 2017
Due: May 15, 2017 at 12pm (noon)

Topic: Structural test bench model of the Canny Edge Decoder

1. Setup:

This assignment is the next step in modeling our application example, the Canny
Edge Detector, as a proper system-level specification model which we can then
use to design our SoC target implementation. In this assignment, we will create a
model with a suitable top-level structural hierarchy including a test bench. We will
also convert the application from single image processing to real-time video
handling. More specifically, we will process a sequence of images extracted from
a stream of video frames.

We will use the same Linux account and the same remote servers as for the
previous assignments. Start by creating a new working directory, so that you can
properly submit your deliverables in the end.

mkdir hw5
 cd hw5

Instead of the previous golf cart image, we will from now on use a video captured
by a drone hovering over the Engingeering Plaza at UCI. Again, we will convert
the original image into an edge image using the Canny algorithm.

The video is available in a shared directory on the server. To save disk space, do
not copy the data into your account, but create a symbolic link to it, as follows:

ln –s ~eecs222/public/video video

2

As in the previous assignment, you have the choice of using either SpecC or
SystemC for your modeling. Both languages are equally capable of describing
the intended top-level structural hierarchy in this assignment. Also, both
simulation environments are equally able to simulate your model in order to
validate its functional correctness.

As starting point, you can use your own SLDL model which you have created in
the previous Assignment 4. Alternatively, you may start from the provided
solution for Assignment 4 which you can copy as follows:

 cp ~eecs222/public/CannyA4_ref.sc Canny.sc
 cp ~eecs222/public/CannyA4_ref.cpp Canny.cpp

For your convenience, we also provide a simple Makefile for use in this
assignment which you can copy as follows:

 cp ~eecs222/public/MakefileA4SpecC ./
 cp ~eecs222/public/MakefileA4SystemC ./

Depending on whether you choose SpecC or SystemC for your modeling,
rename the corresponding file into the actual Makefile to be used by make.

A simple call to make will then compile your model into an executable, and a call
to make test will simulate the model and compare the generated edge images
against the reference images provided in the video directory.

2. Creating a test bench model with top-level structural hierarchy

Step 1: Convert the application to process a stream of video frames

Instead of the previous golf cart image (input file “golfcart.pgm” and output file
“golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm”), we will process a stream of
video frames from now on.

Adjust the model source code so that it processes 20 images in a loop. The input
images are named “video/EngPlaza001.pgm” and so on, with increasing
numbering. After processing the image, your model should output the generated
edge image as “EngPlaza001_edges.pgm”, and so on.

With these new file names in place, you should be able to simulate and check
your model with a simple make test command.

3

Step 2: Add a test bench and platform structure to your SLDL model

The purpose of this assignment is to introduce a proper test bench and overall
structural hierarchy into our application model. In particular, we will introduce the
top-level behavior Main (SpecC) or top-level module Top (SystemC). This will
consist of three blocks, namely Stimulus, Platform, and Monitor.

The Platform behavior/module, in turn, should contain a dedicated input unit
DataIn, an output unit DataOut, and the actual design under test DUT.

For communication, we will introduce queue-type channels from the respective
standard channel library.

For SpecC modeling, we will use typed-queue channels (of size 2) to send and
receive the image data between the behaviors. For reference, please see the
simple example of a typed-queue channel in ~eecs222/public/queue.sc
which we have discussed at the end of Lecture 5. As data type for the queue
channels, please define the following:

typedef unsigned char img[SIZE]; // image data type

On the other hand, for SystemC modeling, use the standard first-in-first-out
channel sc_fifo<IMAGE> where IMAGE is the type of the data you need to
communicate. Since IMAGE is an array and C++ does not provide an operator for
array assignment, however, we need to wrap the array into a proper class with
overloaded operators. To simplify this technicality, copy the class IMAGE from
this provided file:

~eecs222/public/Image.cpp

For the above described top-level structural hierarchy, a total of four channel
instances will be needed, two at the test bench level (Main behavior or Top
module), and two within the Platform behavior.

Overall, your model should be structured as the following instance tree shows:

Main / Top
|------ Monitor monitor
|------ Platform platform
| |------ DUT canny
| |------ DataIn din
| |------ DataOut dout
| |------ c_img_queue q1
| \------ c_img_queue q2
|------ Stimulus stimulus
|------ c_img_queue q1
\------ c_img_queue q2

4

Specifically, the Main behavior or Top module should instantiate Stimulus,
Platform and Monitor in parallel. The Stimulus block should read the input
image from the file system and pass it into the Platform via the first queue
channel. Correspondingly, the Monitor should receive via the second channel
the generated edge image from the Platform and write it out into the output file.

In the Platform, the DataIn block should, in an endless loop, receive an input
image and pass it unmodified to the DUT. Similar, the DataOut block should,
also in an endless loop, receive an input image from the DUT and pass it on.
These two instances will be needed later during model refinement. They will
allow our test bench to remain unmodified even when later in the design flow the
communication to the DUT is implemented via detailed bus protocols.

Finally, the DUT block should contain the entire Canny algorithm source code. Its
main thread will receive an image via the input port, call the canny() function to
process it, and then send out the edge image via the output port. Since our target
SoC will never stop working (unless its power is turned off), this processing will
run in an endless loop, similar as the infinite loops in the DataIn and DataOut
blocks.

Throughout your model recoding, ensure that it still compiles, simulates, and
generates the correct output images. You are done with this assignment when
the hierarchy described above has been created and your code compiles fine
without errors or warnings.

In the end, your final model should not contain any global functions (except for
sc_main in SystemC), neither any global variables, nor any wait-for-time
statements. For communication, only standard library channels should be used
(no plain events or user-defined channels).

3. Submission:

For this assignment, submit the following deliverables:

Canny.sc or Canny.cpp
Canny.txt

Again, the text file should briefly mention whether or not your efforts were
successful and what (if any) problems you encountered. Please be brief!

To submit these files, change into the parent directory of your hw5 directory and
run the ~eecs222/bin/turnin.sh script. As before, note that the submission
script will ask for both the SystemC and SpecC models, but you need to submit
only the one that you have chosen for your modeling.

5

Finally, remember that you can use the turnin-script to submit your work at any
time before the deadline, but not after! Since you can submit as many times as
you want (newer submissions will overwrite older ones), it is highly
recommended to submit early and even incomplete work, in order to avoid
missing the hard deadline.

Late submissions will not be considered!

To double-check that your submitted files have been received, you can run the
~eecs222/bin/listfiles.py script.

For any technical questions, please use the course message board.

--
Rainer Doemer (EH3217, x4-9007, doemer@uci.edu)

