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EECS 222: Embedded System Modeling 
Spring 2017 

 
Assignment 7 

 
Posted: May 24, 2017 
Due: May 31, 2017 at 12pm (noon) 
 
Topic: Pipelining and parallelization of the Canny Edge Decoder 
 
 
1. Setup: 
 
This assignment continues the modeling of our application example, the Canny 
Edge Detector, as a proper system-level specification model which we can use to 
design our SoC target implementation. This time we will refine the previous 
model with back-annotated timing and pipeline and parallelize the components in 
the design-under-test (DUT) block. Over the course of the 5 steps outlined below, 
the design model will be refined from an untimed model into one with estimated 
delays where the simulation allows us to observe the improved performance due 
to pipelining and parallelization. 

Again, we will use the same setup as for the previous assignments. Start by 
creating a new working directory with a link to the video files. 

mkdir hw7 
cd hw7 
ln –s ~eecs222/public/video video 

As in the previous assignments, you have again the choice of using either SpecC 
or SystemC for your modeling and estimation. Both SLDLs are suitable for this 
assignment, but certain task are different, as outlined in detail below. 

As starting point, you can use your own SLDL model which you have created in 
the previous Assignment 6. Alternatively, you may start from the provided 
solution for Assignment 6 which you can copy as follows: 

 cp ~eecs222/public/CannyA6_ref.sc Canny.sc 
 cp ~eecs222/public/CannyA6_ref.cpp Canny.cpp 

You may also want to reuse the Makefile from the previous assignments: 

 cp ~eecs222/public/MakefileA4SpecC ./ 
 cp ~eecs222/public/MakefileA4SystemC ./ 

As before, depending on whether you choose SpecC or SystemC, rename the 
corresponding file into the actual Makefile to be used by make. 
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2. Pipelining and Parallelization of the Canny Model 

Step 1: Instrument the model with logging of simulation time and frame delay 

In order to observe the performance of the application in the simulator, we need 
to insert statements to monitor the simulation time in the test bench (Step 1) and 
then instrument the model with estimated delays in the DUT (Step 2). 

Since we are interested in the latency and frame delay, we need to measure the 
time it takes to process a frame. To do that, we let the Stimulus block note the 
start time of processing each frame and communicate that to the Monitor which, 
in turn, can then compute and display the delay of each frame. 

For the communication from Stimulus to Monitor, instantiate a FIFO channel with 
sufficient buffer space for the frame start times. The channel (of type 
sc_time_queue in SpecC, or sc_fifo<sc_time> in SystemC, respectively) 
should pass simulation time stamps from the Stimulus to the Monitor. In the 
Stimulus, take the current simulation time right after sending out the frame image, 
print it to the screen for observation, and also send it to the Monitor through the 
new channel. In the Monitor, take the difference between the current time and the 
time the frame was sent, and display it on the screen for each frame. 

The following log illustrates the desired screen output (with the exception that 
your log in this initial step will show all times as zero): 

        0: Stimulus sent frame  1. 
        0: Stimulus sent frame  2. 
        0: Stimulus sent frame  3. 
        0: Stimulus sent frame  4. 
        0: Stimulus sent frame  5. 
        0: Stimulus sent frame  6. 
  6547500: Monitor received frame  1 with  6547500 us delay. 
  6547500: Stimulus sent frame  7. 
 13095000: Monitor received frame  1 with 13095000 us delay. 
 13095000: Stimulus sent frame  8. 
 19642500: Monitor received frame  2 with 19642500 us delay. 
 19642500: Stimulus sent frame  9. 
[...] 
 91665000: Monitor received frame 13 with 39285000 us delay. 
 91665000: Stimulus sent frame 20. 
 98212500: Monitor received frame 14 with 39285000 us delay. 
104760000: Monitor received frame 15 with 39285000 us delay. 
111307500: Monitor received frame 16 with 39285000 us delay. 
117855000: Monitor received frame 17 with 39285000 us delay. 
124402500: Monitor received frame 18 with 39285000 us delay. 
130950000: Monitor received frame 19 with 39285000 us delay. 
130950000: Monitor exits simulation. 
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As shown above, it is recommended to prefix each log line with the current 
simulation time as this significantly simplifies understanding and any needed 
debugging. Also shown above is the choice of micro-seconds (noted as us) as 
the time unit which fits well for our application. 

You want to keep a copy of your model at this stage, say CannyA7_step1, so 
that you can compare the observed timing among the different models in this 
assignment at the end. 

Step 2: Back-annotate the estimated timing in the DUT components 

At the end of the previous Assignment 6, we obtained some relative timing 
estimates for the blocks in the DUT. While these estimates are very rough and 
inaccurate at this stage, they can still serve the purpose of observing the benefits 
of the transformations we apply to the model in this assignment. 

For consistency and easier discussion of this assignment, we will choose here 
the timing estimates obtained by SCE for the ARM_926EJS processor (see slide 
11 of Lecture 15) assuming we can improve those by 10x for a 1.0 GHz clock 
frequency. Specifically, we will assume the following total delays for the DUT 
components: 

Receive_Image 0 ms 
Gaussian_Kernel 0 ms 
BlurX 41680 ms 
BlurY 43740 ms 
Derivative_X_Y 5340 ms 
Magnitude_X_Y 5340 ms 
Non_Max_Supp 27200 ms 
Apply_Hysteresis 7650 ms 

Back-annotate these delays into your model by inserting suitable wait-for-time 
statements at the beginning of the main method of each DUT component. Here, 
be sure to adjust the above values for the number of frames processed in your 
test bench (the values above were estimated over the entire stream of 20 
frames). 

After inserting the wait-for-time statements, run your model and observe the 
simulation time and frame delays reported by the log. (Hint: if you model in 
SpecC, you should see the exact same times as listed in the example log above.) 

Again, you want to keep a copy of your model at this stage, say 
CannyA7_step2, so that you can compare this initial observed timing with the 
following models in this assignment. 
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Step 3: Pipeline the DUT into stages for each component 

As discussed in Lecture 15, we will use pipelining as the overall technique to 
improve the throughput of the DUT. 

If you are using SpecC for your modeling, pipelining can be applied by simply 
replacing the endless loop in the Canny behavior (i.e. the fsm construct) with an 
infinite pipeline (i.e. a pipe construct). Then, to allow for the necessary buffering 
of the data between the pipeline stages, add piped qualifiers to the port-mapped 
variables between the stages. Note that you will need to duplicate those 
variables (and ports) whose values are needed in multiple following stages. 

If you are using SystemC and your DUT components are already communicating 
via sc_fifo channels, then there is nothing to do in this step. Your model is 
already pipelined! 

As a result of this step, your model should contain 5 pipeline stages and, 
because of this, execute significantly faster (in simulated time!) than before. 

Again, you want to keep a copy of your model at this stage, say 
CannyA7_step3. 

Step 4: Integrate the Gaussian Smooth components into the pipeline stages 

To further improve the performance of your design, we will decompose the first 
pipeline stage, namely the Gaussian Smooth block, and create two additional 
pipeline stages for the BlurX and BlurY blocks. In other words, we move the 
BlurX and BlurY blocks from the Gaussian_Smooth parent one level up into 
the DUT. Here, be sure to properly arrange the port connectivity and add any 
needed buffering between the new pipeline stages. 

The expected instance tree of the DUT block should look like this: 

DUT 
|------ Gaussian_Smooth gaussian_smooth 
|       |------ Receive_Image receive 
|       \------ Gaussian_Kernel gauss 
|------ BlurX blurX 
|------ BlurY blurY 
|------ Derivative_X_Y derivative_x_y 
|------ Magnitude_X_Y magnitude_x_y 
|------ Non_Max_Supp non_max_supp 
\------ Apply_Hysteresis apply_hysteresis 

As a result of this step, your model should now contain a total of 7 pipeline 
stages and, once again, execute significantly faster (in simulated time) than 
before. 
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Again, keep a copy of your model at this stage, say CannyA7_step4. 

Step 5: Slice the BlurX and BlurY blocks into parallel components 

Finally we will remedy the identified performance bottleneck in the BlurX and 
BlurY components by parallelization. As discussed in Lecture 15, both blocks 
are straightforward to optimize by parallelizing the operations in the rows and 
columns, respectively. While we could technically operate on every single row or 
column in parallel (as a real graphics processing unit (GPU) could do it), we will 
limit our efforts to 8 parallel slices for this assignment. 

Specifically, convert the existing BlurX and BlurY blocks into BlurX_Slice 
and BlurY_Slice components that only operate on a one-eighth slice of the 
image. For example, the first BlurX_Slice instance sliceX1 will process the 
rows from (ROWS/8)*0 through (ROWS/8)*1-1 and sliceX2 will process the 
rows from (ROWS/8)*1 through (ROWS/8)*2-1 and so on. Be sure to adjust 
the back-annotated delays by the expected speedup of 8x. 

Then, instantiate 8 parallel instances of these slice processors in replacements of 
the previous BlurX and BlurY blocks. In the end, the expected instance tree of 
the DUT should look like this: 

DUT 
|------ Gaussian_Smooth gaussian_smooth 
|       |------ Receive_Image receive 
|       \------ Gaussian_Kernel gauss 
|------ BlurX blurX 
|       |------ BlurX_Slice sliceX1 
|       |------ BlurX_Slice sliceX2 
|       |------ BlurX_Slice sliceX3 
|       |------ BlurX_Slice sliceX4 
|       |------ BlurX_Slice sliceX5 
|       |------ BlurX_Slice sliceX6 
|       |------ BlurX_Slice sliceX7 
|       \------ BlurX_Slice sliceX8 
|------ BlurY blurY 
|       |------ BlurY_Slice sliceY1 
|       |------ BlurY_Slice sliceY2 
|       |------ BlurY_Slice sliceY3 
|       |       [...] 
|       |------ BlurY_Slice sliceY7 
|       \------ BlurY_Slice sliceY8 
|------ Derivative_X_Y derivative_x_y 
|------ Magnitude_X_Y magnitude_x_y 
|------ Non_Max_Supp non_max_supp 
\------ Apply_Hysteresis apply_hysteresis 
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As a result of this assignment, your final model CannyA7_step5 should, once 
again, execute significantly faster (in simulated time) than in the previous step. 

Note the timing of each model and report it in your text file submission. 
Specifically, we are interested in the total simulation time and the longest delay 
for processing a frame for each of the 5 steps of model refinement. Thus, report 
the observed timings in the following table: 

Model          Frame Delay       Total simulation time 
CannyA7_step1  ... us            ... us 
CannyA7_step2  ... us            ... us 
CannyA7_step3  ... us            ... us 
CannyA7_step4  ... us            ... us 
CannyA7_step5  ... us            ... us 

 

3. Submission: 

For this assignment, submit the following deliverables: 

Canny.sc or Canny.cpp 
Canny.txt 

As before, the text file should briefly mention whether or not your efforts were 
successful and what (if any) problems you encountered. In addition, include the 
observed timing results in the above table and a brief explanation. 

To submit these files, change into the parent directory of your hw7 directory and 
run the ~eecs222/bin/turnin.sh script. As before, note that the submission 
script will ask for both the SystemC and SpecC models, but you need to submit 
only the one that you have chosen for your modeling. 

Again, be sure to submit on time. Late submissions will not be considered! 

To double-check that your submitted files have been received, you can run the 
~eecs222/bin/listfiles.py script. 

For any technical questions, please use the course message board. 

 

-- 
Rainer Doemer (EH3217, x4-9007, doemer@uci.edu) 
 


