
EECS222: Embedded System Modeling Lecture 1

(c) 2017 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 1

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 2

Lecture 1: Overview

• Course Overview
– Context, content

• Course Administration
– Schedule, assignments, communication

• Introduction to Embedded System Design
– Embedded computer systems

– Levels of abstraction

– System design flow

• Project Assignment 1
– Setup and introduction to application example

EECS222: Embedded System Modeling Lecture 1

(c) 2017 R. Doemer 2

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 3

Course Context

• Graduate courses on Embedded System Design
1. EECS 222: Embedded System Modeling

2. EECS 225: Embedded System Design

3. EECS 226: Embedded System Software

4. EECS 227: Cyber-Physical System Design

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 4

Course Context

• Graduate courses on Embedded System Design
1. EECS 222: Embedded System Modeling

Computation models for embedded systems.
System-level specification and description languages.
Concepts, requirements, examples.
Embedded system models at different levels of abstraction.
Modeling of test benches, design under test, IP components.
Discrete event simulation, semantics, and algorithms.

2. EECS 225: Embedded System Design

3. EECS 226: Embedded System Software

4. EECS 227: Cyber-Physical System Design

EECS222: Embedded System Modeling Lecture 1

(c) 2017 R. Doemer 3

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 5

Course Context

• Graduate courses on Embedded System Design
1. EECS 222: Embedded System Modeling

2. EECS 225: Embedded System Design
Embedded system design flow and methodology.
Design space exploration. Co-design of hardware and software,
embedded architecture and network exploration and synthesis.
System software/hardware interface generation.
Real-time constraints, specification-to-architecture mapping,
design tools and methodologies.

3. EECS 226: Embedded System Software

4. EECS 227: Cyber-Physical System Design

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 6

Course Context

• Graduate courses on Embedded System Design
1. EECS 222: Embedded System Modeling

2. EECS 225: Embedded System Design

3. EECS 226: Embedded System Software
Embedded system software concepts, requirements, examples,
for engineering application such as multi-media and automotive.
Software generation methodology.
Algorithmic specification, design constraints.
Embedded operating systems.
Static, dynamic, real-time scheduling.
Input/output, interrupt handling.
Code generation, compilation, instruction set simulation.

4. EECS 227: Cyber-Physical System Design

EECS222: Embedded System Modeling Lecture 1

(c) 2017 R. Doemer 4

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 7

Course Context

• Graduate courses on Embedded System Design
1. EECS 222: Embedded System Modeling

2. EECS 225: Embedded System Design

3. EECS 226: Embedded System Software

4. EECS 227: Cyber-Physical System Design
Model-based design of cyber-physical systems including, e.g.,
plant, sensing, control, actuation, embedded hardware/software,
communication, real-time analysis, various levels of simulation
(MILS, SILS, HILS), tools and methodologies for automatic
synthesis, and application from various interdisciplinary domains.

EECS 222 Course Content

1. Embedded system concepts, abstraction levels,
computational models

2. The SpecC system-level description language

3. The SystemC system-level description language

4. Embedded system specification,
modeling guidelines

5. Validation, execution and simulation semantics

6. Top-down design methodology

7. System-level architecture modeling

8. Embedded system communication modeling

9. Cycle-accurate modeling, implementation

10.UML and other system-level description languages

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 8

EECS222: Embedded System Modeling Lecture 1

(c) 2017 R. Doemer 5

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 9

Course Administration

• Course web pages at
http://eee.uci.edu/17s/18425/
– Instructor information

– Course description and policies

– Objectives and outcomes

– Contents and schedule

– Resources and communication

– Assignments

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 10

Embedded System Design

• Embedded Computer Systems

• System-on-Chip (SoC) Design

• Abstraction Levels

• Embedded System Design Flow

EECS222: Embedded System Modeling Lecture 1

(c) 2017 R. Doemer 6

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 11

Embedded Computer Systems

• Computers are ubiquitous, omnipresent…

• System-on-Chip (SoC) Design:
Design of complex embedded systems
on a single chip

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 12

Embedded Systems

• System embedded into cyber-physical system
– Constraints from external input (often real-time)

– Application specific (not general purpose)

• Omnipresent in our environment
– Pervasive in many application domains

– In 2005 [Source Netrino]

• Only 2% of all processors in workstations

• Remaining 8.8 billion in embedded systems

– Most computers are embedded systems!

Source: PhilipsSource: Miele

Source: P. Chou, UCI

Source: Edumicator

Source: www.medicacorp.com/Source: www.trouper.com

EECS222: Embedded System Modeling Lecture 1

(c) 2017 R. Doemer 7

Source:
Motorola Inc

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 13

Embedded System Design

• Design challenges
– Often mobile

• Battery powered (low power)

– Often highly reliable
• Extreme environment (e.g. temperature)

– High performance constraints
• Often real-time requirements

– High complexity
• E.g. Mercedes Benz E-class

– 55 electronic control units

– 5 communication busses

– Tightly coupled
• Software

• Hardware

– Rapid development
for low price…

Source: Daimler

Source: Xilinx

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 14

Embedded System Design

• Design Advantages
– Application known at design time

– Environment known at design time

– Allows for customized / optimized solution
• Improved performance

• More functionality

• At lower power

• Custom Platform, SW and HW components
– Multi-Processor System-on-Chip (MPSoC),

• Complete embedded system integrated on a chip

– General-purpose and application-specific processors

– Application Specific Integrated Circuit (ASIC)

– Field Programmable Gate Array (FPGA)

– Circuit board with off-the-shelf-components

Source: simh.trailing-edge.com

EECS222: Embedded System Modeling Lecture 1

(c) 2017 R. Doemer 8

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 15

Design Complexity Challenge

• Productivity Gap
Hardware design gap

+ Software design gap

= System design gap

HW Design
Productivity
1.6x/18 months

Capability of
Technology
2x/18 months

Software
Productivity
2x/5 years

log

19
81

19
85

19
89

19
93

19
97

20
01

20
05

20
09

Average HW +
SW Productivity

Additional SW
required for HW
2x/10 months

System
Design Gap

HW Design
Gap

time

(source: “Hardware-dependent Software”, Ecker et al., 2009)

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 16

Design Complexity Challenge

• Productivity Gaps
– Hardware productivity gap

• Capacities in chip size outpace capabilities in chip design

• Moore’s law: chip capacity doubles every 18 months

• HW design productivity estimated at 1.6x over 18 months

– Software productivity gap
• Growth of SW productivity estimated at 2x every 5 years

• Needs in embedded SW estimated at 2x over 10 months

– System productivity gap
• HW gap + SW gap

EECS222: Embedded System Modeling Lecture 1

(c) 2017 R. Doemer 9

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 17

Abstraction Levels

• System-on-Chip (SoC) design faces tremendous
increase of design complexity

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of componentsLevel

Gate

RTL

Algorithm

System

Transistor

A
b

st
ra

c
ti

o
n

A
cc

u
ra

c
y

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 18

System level
1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of componentsLevel

Gate

RTL

Algorithm

Transistor

A
b

st
ra

c
ti

o
n

A
cc

u
ra

c
y

Abstraction Levels

• System-on-Chip (SoC) design faces tremendous
increase of design complexity

• Move to higher levels of abstraction!

EECS222: Embedded System Modeling Lecture 1

(c) 2017 R. Doemer 10

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 19

Abstraction Levels

TimingLow abstraction

High abstraction

Implementation Detail

Structure

physical layout

unstructured

Structure

real time

untimed

Timing

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 20

Top-Down System Design Flow

Implementation
model

Communication
model

Architecture
model

Specification
model

Manufacturing

Product features

Structure

pure functional

transaction level

bus functional

RTL / IS

requirements

Timing

untimed

estimated timing

timing accurate

cycle accurate

constraints

EECS222: Embedded System Modeling Lecture 1

(c) 2017 R. Doemer 11

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 21

Top-Down System Design Flow

untimed

estimated timing

timing accurate

cycle accurate

constraints
T
I

M
I
N
Gpure functional

transaction level

bus functional

RTL / IS

requirements
S
T
R
U
C
T
U
R
E

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Comp.
IP

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

RTOS
IP

RTL
IP

Architecture refinement

Capture

Communication model

Product specification

Manufacturing

EECS 222 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic Edge Detection in a Digital Camera

– Application Source and Documentation:
• http://marathon.csee.usf.edu/edge/edge_detection.html

• http://en.wikipedia.org/wiki/Canny_edge_detector

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 22

golfcart.pgm golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

EECS222: Embedded System Modeling Lecture 1

(c) 2017 R. Doemer 12

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 23

Homework Assignment 1

• Administration
– EECS Department Linux Servers

• crystalcove.eecs.uci.edu, and others

• Linux environment (CentOS 6.8)
• Access via secure shell protocol (SSH)

– Accounts
• User ID same as your UCInetID

• Password same as your EEE password

– Login and make yourself familiar with
• Command-line tools and GUI tools (which need X client)

• Text editing and C/C++ programming

• Image processing tools

Homework Assignment 1

• Task: Introduction to Application Example
– Canny Edge Detector

– Algorithm for edge detection in digital images

• Steps
1. Setup your Linux programming environment

2. Download, adjust, and compile the application C code
with the GNU C compiler (gcc)

3. Study the application

• Deliverables
– None at this time (preparation for following assignments)

• Due
– By next week: April 10, 2017, 12pm (noon!)

EECS222: Embedded System Modeling, Lecture 1 (c) 2017 R. Doemer 24

