
EECS222: Embedded System Modeling Lecture 10

(c) 2017 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 10

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 2

Lecture 10: Overview

• Simulation Semantics
– Discrete Event Simulation

– Parallel Discrete Event Simulation

– Out-of-Order Parallel Discrete Event Simulation

• Formal Execution Semantics
– Time-Interval Formalism

• Homework Assignment 4
– SLDL Model of the Canny Edge Detector

EECS222: Embedded System Modeling Lecture 10

(c) 2017 R. Doemer 2

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 3

Simulation Semantics

• Discrete Event Simulation Algorithm for SpecC
– available in LRM (appendix), good for documentation

 abstract definition (defines a set of valid implementations)

 not general (possibly incomplete)

• Definitions:
– At any time, each thread t is in one of the following sets:

• READY: set of threads ready to execute (initially root thread)
• WAIT: set of threads suspended by wait (initially Ø)
• WAITFOR: set of threads suspended by waitfor (initially Ø)

– Notified events are stored in a set N
• notify e1 adds event e1 to N

• wait e1 will wakeup when e1 is in N

• Consumption of event e means event e is taken out of N

• Expiration of notified events means N is set to Ø

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 4

Simulation Semantics

• Discrete Event Simulation Algorithm for SpecC

Select thread tREADY, execute t

Add notified events to Nnotify

Move tREADY to WAIT

Move tREADY to WAITFOR

wait

waitfor

READY=Ø

Set N=Ø

READY=Ø

Update simulation time, move earliest tWAITFOR to READY

READY=Ø

Stop

Start

NO

YES

NO

YES

NO

YES

YES

YES

YES

Move all tWAIT waiting for events eN to READY

NO

E
va

lu
a

tio
n

 p
h

a
se

D
e

lta
 C

ycle

T
im

e
 C

ycle

EECS222: Embedded System Modeling Lecture 10

(c) 2017 R. Doemer 3

Discrete Event Simulation (DES)

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 5

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Traditional DES

– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta cycle

• Time cycle

 Partial temporal order with barriers

• Reference Simulators
– Both SystemC and SpecC

implement cooperative multi-threading

 A single thread is active at any time!

 Cannot exploit multiple parallel cores

– Example: Execution of four threads

Discrete Event Simulation (DES)

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 6

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1 Parallel Simulation!?

• SLDL Execution Semantics
– SystemC prescribes

Cooperative Multi-Threading
• SystemC LRM defines:

“process instances execute without
interruption”

 Preemptive scheduling forbidden!

– SpecC specifies
Preemptive Multi-Threading

• SpecC LRM defines:
”preemptive execution”,
”No atomicity is guaranteed”

 Preemptive scheduling assumed!

 Need critical regions with
mutually exclusive access: Channels!

EECS222: Embedded System Modeling Lecture 10

(c) 2017 R. Doemer 4

Discrete Event Simulation (DES)

 Parallel Simulation!?

• Safe Communication in Parallel Execution Context
 Requires protection of inter-thread communication!

– SpecC
• Preemptive multi-threading mandates channels as “monitors”

– SystemC
• Cooperative multi-threading assumes execution “without interruption”

 Protection Idea: Insert a mutex lock into channel instances
• Lock the channel

on thread entry

• Unlock the channel
on thread exit

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 7

Channel

Thread 2Thread 1

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 8

• Traditional DES Algorithm
– Active Threads

are managed
in READY queue

– Scheduler picks
a single thread
and executes it

– Simulation progress
• Delta cycle

• Time cycle

Parallel Discrete Event Simulation (PDES)

EECS222: Embedded System Modeling Lecture 10

(c) 2017 R. Doemer 5

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 9

Parallel Discrete Event Simulation (PDES)

• Parallel DES Algorithm
– Active threads

are managed
in READY queue

– Scheduler
picks N threads
and executes
them in parallel

– N = number
of available
CPU cores

– Simulation progress
• Delta cycle

• Time cycle

Parallel Discrete Event Simulation (PDES)

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 10

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Parallel DES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

– Cycle boundaries are
absolute barriers

• Aggressive Parallel DES
– Conservative Approaches

• Careful static analysis prevents conflicts

– Optimistic Approaches
• Conflicts are detected and addressed

(roll back)

EECS222: Embedded System Modeling Lecture 10

(c) 2017 R. Doemer 6

Out-of-Order Parallel DES

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 11

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Out-of-Order PDES

– Threads execute in parallel iff
• in the same delta cycle, and

• In the same time cycle,

• OR if there are no conflicts!

– Needs compiler support for
static data conflict analysis!

 Preserves the accuracy of event
handling and simulation time

 Allows as many threads in parallel
as possible

 Results in higher speedup!
• Reference: [DATE’12]

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 12

Formal Execution Semantics

• Examples of Formally Defined Semantics
1) Time-interval formalism

• Formally defines timed execution semantics of SpecC
• Covers sequentiality, concurrency, synchronization
• Allows reasoning over execution order, dependencies
Discussed in the following slides!

2) Abstract State Machines (ASM)
• Complete execution semantics of SpecC

• wait, notify, notifyone, par, pipe, try-trap-interrupt
• Operational semantics only (no data types!)

• Abstract model closely matches SystemC
• Abstract model closely matches VHDL, Verilog
Not discused in this course

EECS222: Embedded System Modeling Lecture 10

(c) 2017 R. Doemer 7

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 13

Formal Execution Semantics

• Time-interval formalism
– Definition of execution semantics of SpecC 2.0

• sequential execution
• concurrent execution (semantics of par)

• synchronization (semantics of notify, wait)

– Sequential execution

behavior B1
{ void main(void)
{ a;
b;
c;

}
};

B1

a b c

time

Tstart(B1) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <= Tend(B1)

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 14

• Time-interval formalism
– Sequential execution

• waitfor rule:
– only waitfor increases simulation time

– other statements execute in zero simulation time

behavior B
{ void main(void)
{ a;
waitfor 10;
b;

}
};

a w b

timet = 0 t = 1 t = 10 t = 11

0 <= Tstart(a) < Tend(a) < 1
0 <= Tstart(w) < Tend(w) = 10

10 <= Tstart(b) < Tend(b) < 11

Formal Execution Semantics

EECS222: Embedded System Modeling Lecture 10

(c) 2017 R. Doemer 8

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 15

Formal Execution Semantics

• Time-interval formalism
– Concurrent execution

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <= Tend(B)

Tstart(B) <= Tstart(d) < Tend(d) <=
Tstart(e) < Tend(e) <=
Tstart(f) < Tend(f) <= Tend(B)

behavior B2
{ void main(void)

{ d; e; f; }
};

behavior B1
{ void main(void)

{ a; b; c; }
};

behavior B
{ void main(void)

{ par{ b1; b2;}
}

};

d

a b c

time

e f

B

Possible Schedule

Preemptive or non-preemptive scheduling:
No atomicity guaranteed!

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 16

Formal Execution Semantics

• Time-interval formalism
– Synchronization

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(w) < Tend(w) <=
Tstart(b) < Tend(b) <= Tend(B)

Tstart(B) <= Tstart(c) < Tend(c) <=
Tstart(n) < Tend(n) <=
Tstart(d) < Tend(d) <= Tend(B)

behavior B2
{ void main(void)

{ c; notify e; d; }
};

behavior B1
{ void main(void)

{ a; wait e; b; }
};

behavior B
{ void main(void)

{ par{ b1; b2;}
}

};

a

c n d

time

w b

Tend(w) >= Tend(n)

EECS222: Embedded System Modeling Lecture 10

(c) 2017 R. Doemer 9

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 17

• Time-interval formalism
– Atomicity

• Since there is generally no atomicity guaranteed,
a safe mechanism for mutual exclusion is necessary

• SpecC 2.0: Channels behave as Monitors!
– A mutex is implicitly contained in each channel instance

– Each channel method implicitly

» acquires the mutex when it starts execution, and

» releases the mutex again when it finishes
– wait and waitfor statements implicitly (and atomically!)

» release an acquired mutex in a channel, and

» re-acquire the mutex before execution resumes

 This easily enables safe communication
without heavy restrictions to the implementation!

Formal Execution Semantics

EECS 222 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic Edge Detection in a Digital Camera

– Application Source and Documentation:
• http://marathon.csee.usf.edu/edge/edge_detection.html

• http://en.wikipedia.org/wiki/Canny_edge_detector

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 18

golfcart.pgm golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

EECS222: Embedded System Modeling Lecture 10

(c) 2017 R. Doemer 10

Homework Assignment 4

• Task: SLDL Model of the Canny Edge Detector
– Convert ANSI-C source code into SLDL model

– Choose either SpecC or SystemC for simulation

• Steps
1. Fix the off-by-one bug in the non_max_supp function

2. Clean-up the code for compilation without warnings

3. Fix configuration parameters to compile-time constants

4. Remove or replace dynamic memory allocation

• Deliverables
– Canny.sc or Canny.cpp (choose one!)

– Canny.txt

• Due
– By next week: May 8, 2017, 12pm (noon!)

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 19

