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Lecture 10: Overview

• Simulation Semantics
– Discrete Event Simulation

– Parallel Discrete Event Simulation

– Out-of-Order Parallel Discrete Event Simulation

• Formal Execution Semantics
– Time-Interval Formalism

• Homework Assignment 4
– SLDL Model of the Canny Edge Detector
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Simulation Semantics

• Discrete Event Simulation Algorithm for SpecC
– available in LRM (appendix), good for documentation

 abstract definition (defines a set of valid implementations)

 not general (possibly incomplete)

• Definitions:
– At any time, each thread t is in one of the following sets:

• READY: set of threads ready to execute (initially root thread)
• WAIT: set of threads suspended by wait (initially Ø)
• WAITFOR: set of threads suspended by waitfor (initially Ø)

– Notified events are stored in a set N
• notify e1 adds event e1 to N

• wait e1 will wakeup when e1 is in N

• Consumption of event e means event e is taken out of N

• Expiration of notified events means N is set to Ø
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Simulation Semantics

• Discrete Event Simulation Algorithm for SpecC

Select thread tREADY, execute t

Add notified events to Nnotify

Move tREADY to WAIT

Move tREADY to WAITFOR

wait
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Update simulation time, move earliest tWAITFOR to READY
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Discrete Event Simulation (DES)
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– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta cycle

• Time cycle

 Partial temporal order with barriers

• Reference Simulators
– Both SystemC and SpecC

implement cooperative multi-threading

 A single thread is active at any time!

 Cannot exploit multiple parallel cores

– Example: Execution of four threads

Discrete Event Simulation (DES)
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• SLDL Execution Semantics
– SystemC prescribes

Cooperative Multi-Threading
• SystemC LRM defines:

“process instances execute without 
interruption”

 Preemptive scheduling forbidden!

– SpecC specifies
Preemptive Multi-Threading

• SpecC LRM defines:
”preemptive execution”,
”No atomicity is guaranteed”

 Preemptive scheduling assumed!

 Need critical regions with
mutually exclusive access: Channels!
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Discrete Event Simulation (DES)

 Parallel Simulation!?

• Safe Communication in Parallel Execution Context
 Requires protection of inter-thread communication!

– SpecC
• Preemptive multi-threading mandates channels as “monitors”

– SystemC
• Cooperative multi-threading assumes execution “without interruption”

 Protection Idea: Insert a mutex lock into channel instances
• Lock the channel

on thread entry

• Unlock the channel
on thread exit
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Channel

Thread 2Thread 1
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• Traditional DES Algorithm
– Active Threads

are managed
in READY queue

– Scheduler picks
a single thread
and executes it

– Simulation progress
• Delta cycle

• Time cycle

Parallel Discrete Event Simulation (PDES)
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Parallel Discrete Event Simulation (PDES)

• Parallel DES Algorithm
– Active threads

are managed
in READY queue

– Scheduler
picks N threads
and executes
them in parallel

– N = number
of available
CPU cores

– Simulation progress
• Delta cycle

• Time cycle

Parallel Discrete Event Simulation (PDES)
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– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

– Cycle boundaries are
absolute barriers

• Aggressive Parallel DES
– Conservative Approaches

• Careful static analysis prevents conflicts

– Optimistic Approaches
• Conflicts are detected and  addressed 

(roll back)
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Out-of-Order Parallel DES
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– Threads execute in parallel iff
• in the same delta cycle, and

• In the same time cycle,

• OR if there are no conflicts!

– Needs compiler support for
static data conflict analysis!

 Preserves the accuracy of event 
handling and simulation time

 Allows as many threads in parallel
as possible

 Results in higher speedup!
• Reference: [DATE’12]
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Formal Execution Semantics

• Examples of Formally Defined Semantics
1) Time-interval formalism

• Formally defines timed execution semantics of SpecC
• Covers sequentiality, concurrency, synchronization
• Allows reasoning over execution order, dependencies
Discussed in the following slides!

2) Abstract State Machines (ASM)
• Complete execution semantics of SpecC

• wait, notify, notifyone, par, pipe, try-trap-interrupt
• Operational semantics only (no data types!)

• Abstract model closely matches SystemC
• Abstract model closely matches VHDL, Verilog
Not discused in this course



EECS222: Embedded System Modeling Lecture 10

(c) 2017 R. Doemer 7

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 13

Formal Execution Semantics

• Time-interval formalism
– Definition of execution semantics of SpecC 2.0

• sequential execution
• concurrent execution (semantics of  par)

• synchronization (semantics of notify, wait)

– Sequential execution

behavior B1
{ void main(void)
{ a;
b;
c;

}
};

B1

a b c

time

Tstart(B1) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <= Tend(B1)
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• Time-interval formalism
– Sequential execution

• waitfor rule:
– only waitfor increases simulation time

– other statements execute in zero simulation time

behavior B
{ void main(void)
{ a;
waitfor 10;
b;

}
};

a w b

timet = 0 t = 1 t = 10 t = 11

0  <=  Tstart(a)  < Tend(a)  <    1
0  <=  Tstart(w) < Tend(w)  =  10

10  <=  Tstart(b)  < Tend(b)  <   11

Formal Execution Semantics
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Formal Execution Semantics

• Time-interval formalism
– Concurrent execution

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <=   Tend(B)

Tstart(B) <= Tstart(d) < Tend(d) <=
Tstart(e) < Tend(e) <=
Tstart(f)  < Tend(f)  <=   Tend(B)

behavior B2
{ void main(void)

{ d; e; f; }
};

behavior B1
{ void main(void)

{ a; b; c; }
};

behavior B
{ void main(void)

{ par{ b1; b2;}
}

};

d

a b c

time

e f

B

Possible Schedule

Preemptive or non-preemptive scheduling:
No atomicity guaranteed!
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Formal Execution Semantics

• Time-interval formalism
– Synchronization

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(w) < Tend(w) <=
Tstart(b) < Tend(b) <=   Tend(B)

Tstart(B) <= Tstart(c) < Tend(c) <=
Tstart(n) < Tend(n) <=
Tstart(d)  < Tend(d) <=  Tend(B)

behavior B2
{ void main(void)

{ c; notify e; d; }
};

behavior B1
{ void main(void)

{ a; wait e;   b; }
};

behavior B
{ void main(void)

{ par{ b1; b2;}
}

};

a

c n d

time

w b

Tend(w) >= Tend(n)
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• Time-interval formalism
– Atomicity

• Since there is generally no atomicity guaranteed,
a safe mechanism for mutual exclusion is necessary

• SpecC 2.0: Channels behave as Monitors!
– A mutex is implicitly contained in each channel instance

– Each channel method implicitly

» acquires the mutex when it starts execution, and

» releases the mutex again when it finishes
– wait and waitfor statements implicitly (and atomically!)

» release an acquired mutex in a channel, and

» re-acquire the mutex before execution resumes

 This easily enables safe communication
without heavy restrictions to the implementation!

Formal Execution Semantics

EECS 222 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic Edge Detection in a Digital Camera

– Application Source and Documentation:
• http://marathon.csee.usf.edu/edge/edge_detection.html

• http://en.wikipedia.org/wiki/Canny_edge_detector
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Homework Assignment 4

• Task: SLDL Model of the Canny Edge Detector
– Convert ANSI-C source code into SLDL model

– Choose either SpecC or SystemC for simulation

• Steps
1. Fix the off-by-one bug in the non_max_supp function

2. Clean-up the code for compilation without warnings

3. Fix configuration parameters to compile-time constants

4. Remove or replace dynamic memory allocation

• Deliverables
– Canny.sc or Canny.cpp (choose one!) 

– Canny.txt

• Due
– By next week: May 8, 2017, 12pm (noon!)
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