EECS222: Embedded System Modeling Lecture 10

! EECS 222:

= Embedded System Modeling
- Lecture 10

||

Rainer Domer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 10: Overview

* Simulation Semantics
— Discrete Event Simulation
— Parallel Discrete Event Simulation
— Out-of-Order Parallel Discrete Event Simulation

* Formal Execution Semantics
— Time-Interval Formalism

* Homework Assignment 4
— SLDL Model of the Canny Edge Detector

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 2

(c) 2017 R. Doemer 1

EECS222: Embedded System Modeling

Simulation Semantics

» Discrete Event Simulation Algorithm for SpecC
— available in LRM (appendix), good for documentation

= abstract definition (defines a set of valid implementations)

= not general (possibly incomplete)
» Definitions:

— At any time, each thread t is in one of the following sets:
* READY: set of threads ready to execute (initially root thread)

» WAIT: set of threads suspended by wait (initially &)

* WAITFOR: set of threads suspended by waitfor (initially &)

— Notified events are stored in a set N
* notify el addseventeltoN
» wait el will wakeup whenelisinN
» Consumption of event e means event e is taken out of N
» Expiration of notified events means N is set to &

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer

-

Simulation Semantics

» Discrete Event Simulation Algorithm for SpecC

Select thread teREADY, execute t e

J

Add notified events to N
Move teREADY to WAIT
Move teREADY to WAITFOR
NO
<EDED
| Move all te WAIT waiting for events ecN to READY |
| Set N=g |

aseyd uonenjeng

ep/(ov ejeqg

YES
[Update simulation time, move earliest te WAITFOR to READY|

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer

<9|o/(:)Y awi|

(c) 2017 R. Doemer

Lecture 10

EECS222: Embedded System Modeling

Discrete Event Simulation (DES)

! + Traditional DES thy thy ths th, gig
g — Concurrent threads of execution '
| | — Managed by a central scheduler
— Driven by events and time advances P F1100
+ Delta cycle J: B 3 10:1
» Time cycle ---15-110:2
> Partial temporal order with barriers
+ Reference Simulators
— Both SystemC and SpecC --<--120:0
implement cooperative multi-threading --4--120:1
» A single thread is active at any time! 1202
» Cannot exploit multiple parallel cores
— Example: Execution of four threads
--<¥--1 30:0
[
EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 5
! Discrete Event Simulation (DES)
g : : .
§ » Parallel Simulation!? thy th, ths th, g-g
£ + SLDL Execution Semantics
||
B — SystemC prescribes
Cooperative Multi-Threading F PP 100
» SystemC LRM defines: S 100
“process instances execute without L > 1 10:2
interruption” :
» Preemptive scheduling forbidden!
— SpecC specifies
Preemptive Multi-Threading —-=F_120:0
» SpecC LRM defines: - :__ 20:1
"preemptive execution”, .11 20:2
“No atomicity is guaranteed” ’
» Preemptive scheduling assumed!
» Need critical regions with
mutually exclusive access: Channels! 2-s2_1 30:0

EECS222: Embedded System Modeling, Lecture 10

¥

(c) 2017 R. Doemer

(c) 2017 R. Doemer

Lecture 10

EECS222: Embedded System Modeling

Discrete Event Simulation (DES)

» Parallel Simulation!?

» Safe Communication in Parallel Execution Context
> Requires protection of inter-thread communication!
— SpecC
» Preemptive multi-threading mandates channels as “monitors”
— SystemC
» Cooperative multi-threading assumes execution “without interruption”
> Protection Idea: Insert a mutex lock into channel instances

* Lock the channel Thread 1 Thread 2
on thread entry
* Unlock the channel N Channel
on thread exit § %
3s
EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 7

Parallel Discrete Event Simulation (PDES)

 Traditional DES Algorithm

— Active Threads
are managed
in READY queue

— Scheduler picks
a single thread
and executes it 1

- Slm UIat'On progress | Moveﬂr. WAIT, READY]; Clear no!ifed(:vents;

+ Delta cycle

« Time cycle g
Update the simulation time;
move the earliest theWAITFOR to READY;

th = Pick(READY, RUN); Gol(th);]

L

= .ﬂ . NO
,,

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 8

(c) 2017 R. Doemer

Lecture 10

EECS222: Embedded System Modeling

 Parallel DES Algorithm

Parallel Discrete Event Simulation (PDES)

— Active threads
are managed

wait(Cond_s, L);

in READY queue

— Scheduler
picks N threads

and executes

Gol(th);

— N = number
of available
CPU cores

— Simulation progress

» Delta cycle
» Time cycle

EECS222: Embedded System Modeling, Lecture 10

Update the simulation time;
move the earliest thEWAITFOR to READY;

READY == @ ?

(c) 2017 R. Doemer

Al
YEhEWAIT, if th's event is notified;

them In para”el - : : | | Move(th, WAIT, READY), Clear notified events;

» Parallel DES

— Threads execute in parallel iff
* in the same delta cycle, and
* in the same time cycle
» Significant speed up!
— Cycle boundaries are
absolute barriers

» Aggressive Parallel DES
— Conservative Approaches

— Optimistic Approaches

» Conflicts are detected and addressed
(roll back)

EECS222: Embedded System Modeling, Lecture 10

» Careful static analysis prevents conflicts -

(c) 2017 R. Doemer

Parallel Discrete Event Simulation (PDES)

TA
0:0

10:0
10:1

10:2

20:0
20:1
20:2

(c) 2017 R. Doemer

Lecture 10

EECS222: Embedded System Modeling

Out-of-Order Parallel DES

* Out-of-Order PDES thy thy thy th, grg
— Threads execute in parallel iff '
« in the same delta cycle, and
* In the same time cycle, -F-F-F1100
* OR if there are no conflicts! - gs-=--1 101
— Needs compiler support for P 10:2
static data conflict analysis!
» Preserves the accuracy of event
handling and simulation time
> Allows as many threads in parallel T 28(1)
as posm-blel I DY
» Results in higher speedup!
» Reference: [DATE’12]
-S4 30:0

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 1

Formal Execution Semantics

« Examples of Formally Defined Semantics

1) Time-interval formalism
» Formally defines timed execution semantics of SpecC
» Covers sequentiality, concurrency, synchronization
+ Allows reasoning over execution order, dependencies
» Discussed in the following slides!

2) Abstract State Machines (ASM)
» Complete execution semantics of SpecC
« wait, notify, notifyone, par, pipe, try-trap-interrupt
» Operational semantics only (no data types!)
» Abstract model closely matches SystemC
» Abstract model closely matches VHDL, Verilog
» Not discused in this course

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 12

(c) 2017 R. Doemer

Lecture 10

EECS222: Embedded System Modeling

Formal Execution Semantics

* Time-interval formalism

— Definition of execution semantics of SpecC 2.0
» sequential execution
» concurrent execution (semantics of par)
* synchronization (semantics of notify, wait)

— Sequential execution

behavior Bl Tstart(B1) <= Tstart(a) < Tend(a) <=

(a
{ void main(void) Tstart(b) < Tend(b) <=
{ a; Tstart(c) < Tend(c) <= Tend(B1)

b-
; raal
) 181 >
}

X = el el

time

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 13

Formal Execution Semantics

* Time-interval formalism

— Sequential execution
* waitfor rule:
— only waitfor increases simulation time
— other statements execute in zero simulation time

behavior B 0 <= Tstart(a) <Tend(a) < 1
{ void main (void) 0 <= Tstart(w) < Tend(w) = 10
{ a; 10 <= Tstart(b) <Tend(b) < 1
waitfor 10;

b;

) b fupr rp

t=0 t=1 t=10 t=11 time

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 14

(c) 2017 R. Doemer

Lecture 10

EECS222: Embedded System Modeling

Formal Execution Semantics

* Time-interval formalism

— Concurrent execution No atomicity guaranteed!

Tstart(B) <= Tstart(a) < Tend(a) <=

behavior B

{ void main (void)
{ a; b; c; }
}i

Possible Schedule
| =

{ void main (void) Tstart(b) < Tend(b) <=

{ par{ bl; b2;} Tstart(c) < Tend(c) <= Tend(B)
},} Tstart(B) <= Tstart(d) < Tend(d) <=

: Tstart(e) < Tend(e) <=
behavior Bl Tstart(f) < Tend(f) <= Tend(B)

behavior B2

{ void main (void)
{d; e; £;}
}i

Preemptive or non-preemptive scheduling:

N
EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer " 15
! Formal Execution Semantics
| : : ,
8§ ¢ Time-interval formalism
|
| — Synchronization
||
||
behavior B Tstart(B) <= Tstart(a) < Tend(a) <=
{ void main(void) Tstart(w) < Tend(w) <=
§ par{ bl; b2;} Tstart(b) < Tend(b) <= Tend(B)
b Tstart(B) <= Tstart(c) < Tend(c) <=
Tstart(n) < Tend(n) <=
behavior Bl Tstart(d) < Tend(d) <= Tend(B)
{ void main (void)
);(aj wait ei bi} Tend(w) >= Tend(n)

{ void main (void)

};{ c; notify e; d; } %(—III»

behavior B2 *El" @El7 (_El_>
df

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer

time

(c) 2017 R. Doemer

Lecture 10

EECS222: Embedded System Modeling

Formal Execution Semantics

» Time-interval formalism
— Atomicity
+ Since there is generally no atomicity guaranteed,
a safe mechanism for mutual exclusion is necessary
» SpecC 2.0: Channels behave as Monitors!
— A mutex is implicitly contained in each channel instance
— Each channel method implicitly
» acquires the mutex when it starts execution, and
» releases the mutex again when it finishes
- wait and waitfor statements implicitly (and atomically!)
» release an acquired mutex in a channel, and
» re-acquire the mutex before execution resumes

» This easily enables safe communication
without heavy restrictions to the implementation!

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 17

EECS 222 Project

» Application Example: Canny Edge Detector

— Embedded system model for image processing:
Automatic Edge Detection in a Digital Camera
e

ﬁ&;i—ﬁﬁi?@;: e, A;%{

h_jl) :
B
el)

golfcart.pgm golfcart.pgm_s_0.60_|_0.30_h_0.80.pgm

— Application Source and Documentation:
 http://marathon.csee.usf.edu/edge/edge_detection.html
 http://en.wikipedia.org/wiki/Canny_edge_detector

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer 18

(c) 2017 R. Doemer

Lecture 10

EECS222: Embedded System Modeling

Homework Assignment 4

Task: SLDL Model of the Canny Edge Detector
— Convert ANSI-C source code into SLDL model
— Choose either SpecC or SystemC for simulation
» Steps
1. Fix the off-by-one bug in the non_max_supp function
2. Clean-up the code for compilation without warnings
3. Fix configuration parameters to compile-time constants
4. Remove or replace dynamic memory allocation
Deliverables
- Canny.sc or Canny.cpp (choose one!)
— Canny. txt
* Due
— By next week: May 8, 2017, 12pm (noon!)

EECS222: Embedded System Modeling, Lecture 10 (c) 2017 R. Doemer

19

(c) 2017 R. Doemer

Lecture 10

10

