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Lecture 11: Overview

• Embedded System Specification
– Essential issues
– Top-down SoC design flow
– Specification Model
– Specification Modeling Guidelines

• Recent Research
– Computer-Aided Model Recoding

• Homework Assignment 5
– Structural Model of the Canny Edge Detector
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Essential Issues in Model Specification

• An Example ...

Proposed by the project team Product specification Product design by senior analyst

Product after implementation Product after acceptance by user What the user wanted

Source: unknown author
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Top-Down Embedded Design Flow
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Specification Model

• High-level, abstract model
– Pure system functionality

– Algorithmic behavior

– No implementation details

• No implicit structure / architecture
– Pure behavioral hierarchy

• Untimed
– Execution in zero (logical) time

– Causal ordering

– Synchronization

Specification model

Architecture refinement

Architecture model

Communication model

Implementation model

Communication refinement

Cycle-accurate refinement

(Source: A. Gerstlauer)
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Specification Model

• Test bench
– Main, Stimulus, Monitor

– Simulation only, no synthesis (no modeling restrictions)

• DUT
– Design under test

– Simulation and synthesis! (restricted by modeling guidelines!)

Stimulus

v2

Monitor

v1

v4

v3
Main

DUT
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Specification Modeling Guidelines

• Specification Model = “Golden” Reference Model
– first functional model in the top-down design flow
– all other models will be derived from and compared to this one

• High abstraction level
– no implementation details
– unrestricted exploration of design space

• Purely functional
– fully executable for functional validation
– no structural information

• No timing
– exception: timing constraints

• Separation of communication and computation
– channels and behaviors
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Specification Modeling Guidelines

• Computation: in Behaviors
– Granularity: Leaf behaviors = smallest indivisible units

– Hierarchy: Explicit execution order
• Sequential, concurrent, pipelined, or FSM

– Encapsulation: Localized variables, explicit port mappings

– Concurrency: Potential parallelism explicitly specified

– Time: Untimed (partial order only)

• Communication: in Channels
– Communication: Standard channel library

– Synchronization: Standard channel library

– Dependencies: Data flow explicit in connectivity
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Specification Modeling Guidelines

• Example: Guidelines for SoC Environment (SCE)
– Clean behavioral hierarchy

• hierarchical behaviors:
no code other than par, pipe, seq, fsm, and  try-trap statements

• leaf behaviors:
Pure ANSI-C code (no SpecC constructs)

– Clean communication
• point-to-point communication via standard channels

• ports of plain type or interface type, no pointers!

• port maps to local variables or ports only

• Detailed rules for SoC Environment
– CECS Technical Report:

“SCE Specification Model Reference Manual”
by A. Gerstlauer, R. Dömer, et al.
• /opt/sce-20100908/doc/SpecRM.pdf
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Specification Modeling Guidelines

• Converting C reference code to SpecC
– Major functions become behaviors
– Function call tree becomes behavioral hierarchy

• Function call becomes behavior instance call
• Sequential statements become leaf behaviors
• Control flow becomes FSM

– Conditional statements: if, if-else, switch
– Loops: while, for, do-while

– Explicitly specify potential parallelism!
– Explicitly specify communication!

• Use standard channels, avoid shared variables
• No global variables
• Only local variables in behaviors and functions/methods

– Data types
• Avoid dynamic memory allocation
• Avoid pointers (arrays are preferred)
• Use explicit data types if suitable (e.g. bit vectors)
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• Specification Model Generation
– It is desirable to automatically generate a Specification Model!

• Key Concepts needed for System Modeling 
– Explicit Structure

• Block diagram structure

• Connectivity through ports

– Explicit Hierarchy
• System composed of components

– Explicit Concurrency
• Potential for parallel execution

• Potential for pipelined execution

– Explicit Communication and Computation
• Channels and Interfaces

• Behaviors / Modules

Recent Research: Model Recoding

B0 B1

B2 B3

System Model
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Recent Research: Model Recoding

• Existing System Design Flow
– Input:    System model

– Output: MPSoC platform

• Actual Starting Point
– C reference code

– Flat, unstructured, sequential

– Insufficient for system exploration

• Need: System Model
– System-Level Description Language (SLDL)

– Well-structured
• Explicit computation, explicit communication

• Potential parallelism explicitly exposed

– Analyzable, synthesizable, verifiable

• Research: Automatic Re-Coding
– How to get from flat and sequential C code

to a flexible and parallel system model?

V1

func2()

func3()

V2 V3

func1()

C Code

B0 B1

B2 B3

System Model

M

M

P1 P2

IPIP

MPSoC Platform

M

Re-Coding
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Recoding: Motivation

• Extend of Automation
– Refinement-based design flow
• Automatic

• Specification model down to 
implementation

• Example: SCE (mostly automatic)
• MP3 decoder: less than 1 week

• Manual
• C reference code to

SpecC specification model
• Source code transformations
• MP3 decoder: 12-14 weeks!

• Automation Gap
– 90% of overall design time

is spent on re-coding!

• Research: Automatic Recoding

Automation GapManual 12-14 weeks

Less than
1 week

Automatic

C Reference Code

Specification Model

Architecture Model

Architecture Exploration

...

Communication Model

Comm. Exploration

Implementation

Source: System Design: A Practical Guide with SpecC

Recoding
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Recoding: Problem Definition

• How to get from flat, sequential C code
to a flexible, parallel system model?

• Recoding 
– Create structural hierarchy

– Partition code and data
• Expose concurrency (parallelize/pipeline)

– Expose communication

– Eliminate pointers

– Make the code compliant
to the design tools, …

• Current Research
– Computer-Aided Recoding

• Automated source code transformations

System Model

B0 B1

B2 B3

C1

C2

C3

C
5

C
6

C code

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

Recoding
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Recoding: Overcoming the Specification Gap

Specification 
Model

B0 B1

B2 B3

C1

C2

C3

C
5

C
6

C Reference 
Model

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

func6 (…) {…}

GAP

Recoding

• Source-to-Source Transformations
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Recoding: Overcoming the Specification Gap

• Step-wise Source-to-Source Transformations
– Creating structural hierarchy [ASPDAC’08]
– Code and data partitioning [DAC’07]
– Creating explicit communication [ASPDAC’07]
– Recode pointers [ISSS/CODES’07]

C Reference 
Model

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

func6 (…) {…}

Flexible
System Model

B0 B1

B2 B3

C1

C2

C3

C
5

C
6

Expose Communication

…

Recode Pointers

Partitioned
Model

B0 B1

B2 B3

V1 V2 V3

Partition Code
and Data

B0

B1

B2

Hierarchical
Model

Create Hierarchy
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Recoding: Creating Structural Hierarchy

• Goals
– Separation of computation and communication
– Explicit structure
– Static connectivity (to enable/simplify analysis!)

• Modeling Hierarchy
– Component blocks

• Ports, data direction
– Component instantiation

• Port map, connectivity

• Describing Hierarchy
– C code

• Global scope
• Local scope

– SLDLs
• Global scope
• Local scope
• Class scope

Syntactical hierarchy
in C code

Local variables

Global Variables
Global Functions

Parameters

Syntactical hierarchy
in SLDL code

Global Variables

Global Functions

Local variables
Parameters

Classes
Ports
Member variables
Instances
Methods

Local variables
Parameters
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• Approach
– Convert functional hierarchy into structural hierarchy
– Step-wise model transformation
– Hierarchical encapsulation

• Utilize given function call tree
• Convert each function into a behavior
• Start with root (i.e. main() function)
• Continue step by step down to leafs

Recoding: Creating Structural Hierarchy

Functional Hierarchy Structural Hierarchy

f2()

f1()

f4()f3()

Model 0

B_f1

f2()

f4()f3()

Model 1

B_f1

B_f2

f3()

f4()

Model 2

B_f1

B_f2

B_f3

B_f4

Model 3
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Recoding: Exposing Potential Parallelism

• Desirable model features
– Enable parallel execution
– Allow mapping

to different PEs

• Recoding tasks
– Partition code
– Partition data
– Synchronize dependents

• Recoding transformations
1. Loop splitting
2. Cumulative Access Type analysis
3. Partitioning of vector dependents
4. Synchronizing dependent variables
 [DAC’07, TCAD’08]

Code

Data

Code partitioning

Data partitioning

Synchronize

Data

Code Code Code

Code Code Code

Code Code Code
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Recoding: Exposing Communication

Option-1 Option-2 Option-n…

Shared-Memory Model

B0 B1

B2 B3

V1 V2 V3

Explicit Communication Model

B0 B1

B2 B3

C1

C2

C3

C
5

C
6

PE0

Memory

Architecture-1

Only Option

PE1

PE2 PE3

PE0

Architecture-2

PE1

PE2 PE3

• Shared-Memory Model 
– Global variables limit the 

number of possible 
automatic explorations

• Explicit Communication 
Model
– Enables automatic 

exploration of more design 
alternatives

• Quality of Communication Exploration 
– Number of explorations

– Extent of automation

– Time 

• Why create explicit communication?
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Recoding: Exposing Communication (1)

• Localize global variables to 
partitions
– To enable multiple explorations

• Procedure
– Find the global variable

– Determine the functions and behaviors 
accessing it

– If only one behavior is accessing it,
migrate the variable into this behavior

Implicit 
Dependency

Block -2Block -1

R1 R2RW2RW1

Block -2Block -1

R1 R2

RW2RW1

Localize 
R1, R2

Behavioral 
Model
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Recoding: Exposing Communication (2)

Data Flow/ Explicit 
connectuivity

Implicit 
Dependency

Read port Write port

• Localize global variables to 
common parent and provide 
explicit access
– Simplifies subsequent analysis

of models

• Procedure
– Find the global variable

– Determine the functions and behaviors 
accessing it

– If multiple behaviors are accessing it,
find the lowest common parent

– Migrate the variable to the parent

– Provide access to the variable by 
recursively inserting ports in behaviors

Block -2Block -1

R1 R2RW2RW1

Block -2Block -1

R1 R2

RW2RW1

Block -2Block -1

R1 R2

RW1

Localize 
R1, R2

Make explicit data 
connections RW1, 

RW2

Behavioral 
Model

RW2
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Block -2Block -1

R1 R2RW2RW1

Block -2Block -1

R1 R2

RW2RW1

Block -2Block -1

R1 R2

RW1

Explicit connectivity

Localize 
R1, R2

Make explicit data 
connections RW1, 

RW2

Block -2Block -1

R1 R2

C1 C2

Establish 
Synchronization

RW1, RW2

Recoding: Exposing Communication (3)

Behavioral 
Model

Read port

Write port

Implicit 
Dependency

• Use message passing channels 
instead of variables
– Defines synchronization scheme

– Guides exploration tools

• Procedure
– Create a typed synchronization channel

– Replace the ports
corresponding to the original variable 
with the channel interface type

– Modify each access to the variable
to call the appropriate interface function 
of the channel

• read() / receive()

• write() / send()

RW2
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Model Recoding: References
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R. Dömer, A. Gerstlauer, F. Rammig), Springer, Irvine, California, May 2007.

• [DAC’07] P. Chandraiah, R. Dömer, "Designer-Controlled Generation of Parallel and 
Flexible Heterogeneous MPSoC Specification", Proceedings of the Design Automation 
Conference 2007, San Diego, California, June 2007.

• [ISSS+CODES’07] P. Chandraiah, R. Dömer, "Pointer Re-coding for Creating Definitive 
MPSoC Models", Proceedings of the International Conference on Hardware/Software 
Codesign and System Synthesis, Salzburg, Austria, September 2007.

• [ASPDAC’08] P. Chandraiah, R. Dömer, "Automatic Re-coding of Reference Code into 
Structured and Analyzable SoC Models", Proceedings of the Asia and South Pacific Design 
Automation Conference 2008, Seoul, Korea, January 2008.

• [TCAD’08] P. Chandraiah, R. Dömer, “Code and Data Structure Partitioning for Parallel and 
Flexible MPSoC Specification Using Designer-Controlled Re-Coding”, IEEE Transactions on 
Computer-Aided Design of Integrated Circuits and Systems vol. 27, no. 6, pp. 1078-1090, 
June 2008.
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EECS 222 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic Edge Detection in a Digital Camera

– Application Source and Documentation:
• http://marathon.csee.usf.edu/edge/edge_detection.html

• http://en.wikipedia.org/wiki/Canny_edge_detector
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EECS 222 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic Edge Detection in a Digital Video Camera

– Video taken by a drone hovering over UCI Engineering Plaza
• Available on the server: ~eecs222/public/video/

• High resolution, 2704 by 1520 pixes

• Video length 9 seconds, using 20 extracted frames for test bench model
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Homework Assignment 5

• Task: Structural Model of the Canny Edge Detector
– Convert the application to process a stream of video frames

– Add test bench structure to the SLDL model from Assignment 4

– Choose either SpecC or SystemC for simulation

• Steps
1. Create test bench structure: Stimulus, Platform, Monitor

2. Create platform model: DataIn, DUT, DataOut

3. Localize functions and add loops for stream processing

• Deliverables
– Canny.sc or Canny.cpp (choose one!) 

– Canny.txt

• Due
– By next week: May 15, 2017, 12pm (noon!)
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