
EECS222: Embedded System Modeling Lecture 11

(c) 2017 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 11

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 2

Lecture 11: Overview

• Embedded System Specification
– Essential issues
– Top-down SoC design flow
– Specification Model
– Specification Modeling Guidelines

• Recent Research
– Computer-Aided Model Recoding

• Homework Assignment 5
– Structural Model of the Canny Edge Detector

EECS222: Embedded System Modeling Lecture 11

(c) 2017 R. Doemer 2

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 3

Essential Issues in Model Specification

• An Example ...

Proposed by the project team Product specification Product design by senior analyst

Product after implementation Product after acceptance by user What the user wanted

Source: unknown author

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 4

Top-Down Embedded Design Flow

untimed

estimated timing

timing accurate

cycle accurate

constraints
T
I

M
I
N
Gpure functional

transaction level

bus functional

RTL / IS

requirements
S
T
R
U
C
T
U
R
E

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Comp.
IP

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

RTOS
IP

RTL
IP

Architecture refinement

Capture

Communication model

Product specification

Manufacturing

EECS222: Embedded System Modeling Lecture 11

(c) 2017 R. Doemer 3

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 5

Specification Model

• High-level, abstract model
– Pure system functionality

– Algorithmic behavior

– No implementation details

• No implicit structure / architecture
– Pure behavioral hierarchy

• Untimed
– Execution in zero (logical) time

– Causal ordering

– Synchronization

Specification model

Architecture refinement

Architecture model

Communication model

Implementation model

Communication refinement

Cycle-accurate refinement

(Source: A. Gerstlauer)

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 6

Specification Model

• Test bench
– Main, Stimulus, Monitor

– Simulation only, no synthesis (no modeling restrictions)

• DUT
– Design under test

– Simulation and synthesis! (restricted by modeling guidelines!)

Stimulus

v2

Monitor

v1

v4

v3
Main

DUT

EECS222: Embedded System Modeling Lecture 11

(c) 2017 R. Doemer 4

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 7

Specification Modeling Guidelines

• Specification Model = “Golden” Reference Model
– first functional model in the top-down design flow
– all other models will be derived from and compared to this one

• High abstraction level
– no implementation details
– unrestricted exploration of design space

• Purely functional
– fully executable for functional validation
– no structural information

• No timing
– exception: timing constraints

• Separation of communication and computation
– channels and behaviors

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 8

Specification Modeling Guidelines

• Computation: in Behaviors
– Granularity: Leaf behaviors = smallest indivisible units

– Hierarchy: Explicit execution order
• Sequential, concurrent, pipelined, or FSM

– Encapsulation: Localized variables, explicit port mappings

– Concurrency: Potential parallelism explicitly specified

– Time: Untimed (partial order only)

• Communication: in Channels
– Communication: Standard channel library

– Synchronization: Standard channel library

– Dependencies: Data flow explicit in connectivity

EECS222: Embedded System Modeling Lecture 11

(c) 2017 R. Doemer 5

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 9

Specification Modeling Guidelines

• Example: Guidelines for SoC Environment (SCE)
– Clean behavioral hierarchy

• hierarchical behaviors:
no code other than par, pipe, seq, fsm, and try-trap statements

• leaf behaviors:
Pure ANSI-C code (no SpecC constructs)

– Clean communication
• point-to-point communication via standard channels

• ports of plain type or interface type, no pointers!

• port maps to local variables or ports only

• Detailed rules for SoC Environment
– CECS Technical Report:

“SCE Specification Model Reference Manual”
by A. Gerstlauer, R. Dömer, et al.
• /opt/sce-20100908/doc/SpecRM.pdf

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 10

Specification Modeling Guidelines

• Converting C reference code to SpecC
– Major functions become behaviors
– Function call tree becomes behavioral hierarchy

• Function call becomes behavior instance call
• Sequential statements become leaf behaviors
• Control flow becomes FSM

– Conditional statements: if, if-else, switch
– Loops: while, for, do-while

– Explicitly specify potential parallelism!
– Explicitly specify communication!

• Use standard channels, avoid shared variables
• No global variables
• Only local variables in behaviors and functions/methods

– Data types
• Avoid dynamic memory allocation
• Avoid pointers (arrays are preferred)
• Use explicit data types if suitable (e.g. bit vectors)

EECS222: Embedded System Modeling Lecture 11

(c) 2017 R. Doemer 6

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 11

• Specification Model Generation
– It is desirable to automatically generate a Specification Model!

• Key Concepts needed for System Modeling
– Explicit Structure

• Block diagram structure

• Connectivity through ports

– Explicit Hierarchy
• System composed of components

– Explicit Concurrency
• Potential for parallel execution

• Potential for pipelined execution

– Explicit Communication and Computation
• Channels and Interfaces

• Behaviors / Modules

Recent Research: Model Recoding

B0 B1

B2 B3

System Model

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 12

Recent Research: Model Recoding

• Existing System Design Flow
– Input: System model

– Output: MPSoC platform

• Actual Starting Point
– C reference code

– Flat, unstructured, sequential

– Insufficient for system exploration

• Need: System Model
– System-Level Description Language (SLDL)

– Well-structured
• Explicit computation, explicit communication

• Potential parallelism explicitly exposed

– Analyzable, synthesizable, verifiable

• Research: Automatic Re-Coding
– How to get from flat and sequential C code

to a flexible and parallel system model?

V1

func2()

func3()

V2 V3

func1()

C Code

B0 B1

B2 B3

System Model

M

M

P1 P2

IPIP

MPSoC Platform

M

Re-Coding

EECS222: Embedded System Modeling Lecture 11

(c) 2017 R. Doemer 7

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 13

Recoding: Motivation

• Extend of Automation
– Refinement-based design flow
• Automatic

• Specification model down to
implementation

• Example: SCE (mostly automatic)
• MP3 decoder: less than 1 week

• Manual
• C reference code to

SpecC specification model
• Source code transformations
• MP3 decoder: 12-14 weeks!

• Automation Gap
– 90% of overall design time

is spent on re-coding!

• Research: Automatic Recoding

Automation GapManual 12-14 weeks

Less than
1 week

Automatic

C Reference Code

Specification Model

Architecture Model

Architecture Exploration

...

Communication Model

Comm. Exploration

Implementation

Source: System Design: A Practical Guide with SpecC

Recoding

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 14

Recoding: Problem Definition

• How to get from flat, sequential C code
to a flexible, parallel system model?

• Recoding
– Create structural hierarchy

– Partition code and data
• Expose concurrency (parallelize/pipeline)

– Expose communication

– Eliminate pointers

– Make the code compliant
to the design tools, …

• Current Research
– Computer-Aided Recoding

• Automated source code transformations

System Model

B0 B1

B2 B3

C1

C2

C3

C
5

C
6

C code

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

Recoding

EECS222: Embedded System Modeling Lecture 11

(c) 2017 R. Doemer 8

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 15

Recoding: Overcoming the Specification Gap

Specification
Model

B0 B1

B2 B3

C1

C2

C3

C
5

C
6

C Reference
Model

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

func6 (…) {…}

GAP

Recoding

• Source-to-Source Transformations

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 16

Recoding: Overcoming the Specification Gap

• Step-wise Source-to-Source Transformations
– Creating structural hierarchy [ASPDAC’08]
– Code and data partitioning [DAC’07]
– Creating explicit communication [ASPDAC’07]
– Recode pointers [ISSS/CODES’07]

C Reference
Model

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

func6 (…) {…}

Flexible
System Model

B0 B1

B2 B3

C1

C2

C3

C
5

C
6

Expose Communication

…

Recode Pointers

Partitioned
Model

B0 B1

B2 B3

V1 V2 V3

Partition Code
and Data

B0

B1

B2

Hierarchical
Model

Create Hierarchy

EECS222: Embedded System Modeling Lecture 11

(c) 2017 R. Doemer 9

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 17

Recoding: Creating Structural Hierarchy

• Goals
– Separation of computation and communication
– Explicit structure
– Static connectivity (to enable/simplify analysis!)

• Modeling Hierarchy
– Component blocks

• Ports, data direction
– Component instantiation

• Port map, connectivity

• Describing Hierarchy
– C code

• Global scope
• Local scope

– SLDLs
• Global scope
• Local scope
• Class scope

Syntactical hierarchy
in C code

Local variables

Global Variables
Global Functions

Parameters

Syntactical hierarchy
in SLDL code

Global Variables

Global Functions

Local variables
Parameters

Classes
Ports
Member variables
Instances
Methods

Local variables
Parameters

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 18

• Approach
– Convert functional hierarchy into structural hierarchy
– Step-wise model transformation
– Hierarchical encapsulation

• Utilize given function call tree
• Convert each function into a behavior
• Start with root (i.e. main() function)
• Continue step by step down to leafs

Recoding: Creating Structural Hierarchy

Functional Hierarchy Structural Hierarchy

f2()

f1()

f4()f3()

Model 0

B_f1

f2()

f4()f3()

Model 1

B_f1

B_f2

f3()

f4()

Model 2

B_f1

B_f2

B_f3

B_f4

Model 3

EECS222: Embedded System Modeling Lecture 11

(c) 2017 R. Doemer 10

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 19

Recoding: Exposing Potential Parallelism

• Desirable model features
– Enable parallel execution
– Allow mapping

to different PEs

• Recoding tasks
– Partition code
– Partition data
– Synchronize dependents

• Recoding transformations
1. Loop splitting
2. Cumulative Access Type analysis
3. Partitioning of vector dependents
4. Synchronizing dependent variables
 [DAC’07, TCAD’08]

Code

Data

Code partitioning

Data partitioning

Synchronize

Data

Code Code Code

Code Code Code

Code Code Code

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 20

Recoding: Exposing Communication

Option-1 Option-2 Option-n…

Shared-Memory Model

B0 B1

B2 B3

V1 V2 V3

Explicit Communication Model

B0 B1

B2 B3

C1

C2

C3

C
5

C
6

PE0

Memory

Architecture-1

Only Option

PE1

PE2 PE3

PE0

Architecture-2

PE1

PE2 PE3

• Shared-Memory Model
– Global variables limit the

number of possible
automatic explorations

• Explicit Communication
Model
– Enables automatic

exploration of more design
alternatives

• Quality of Communication Exploration
– Number of explorations

– Extent of automation

– Time

• Why create explicit communication?

EECS222: Embedded System Modeling Lecture 11

(c) 2017 R. Doemer 11

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 21

Recoding: Exposing Communication (1)

• Localize global variables to
partitions
– To enable multiple explorations

• Procedure
– Find the global variable

– Determine the functions and behaviors
accessing it

– If only one behavior is accessing it,
migrate the variable into this behavior

Implicit
Dependency

Block -2Block -1

R1 R2RW2RW1

Block -2Block -1

R1 R2

RW2RW1

Localize
R1, R2

Behavioral
Model

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 22

Recoding: Exposing Communication (2)

Data Flow/ Explicit
connectuivity

Implicit
Dependency

Read port Write port

• Localize global variables to
common parent and provide
explicit access
– Simplifies subsequent analysis

of models

• Procedure
– Find the global variable

– Determine the functions and behaviors
accessing it

– If multiple behaviors are accessing it,
find the lowest common parent

– Migrate the variable to the parent

– Provide access to the variable by
recursively inserting ports in behaviors

Block -2Block -1

R1 R2RW2RW1

Block -2Block -1

R1 R2

RW2RW1

Block -2Block -1

R1 R2

RW1

Localize
R1, R2

Make explicit data
connections RW1,

RW2

Behavioral
Model

RW2

EECS222: Embedded System Modeling Lecture 11

(c) 2017 R. Doemer 12

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 23

Block -2Block -1

R1 R2RW2RW1

Block -2Block -1

R1 R2

RW2RW1

Block -2Block -1

R1 R2

RW1

Explicit connectivity

Localize
R1, R2

Make explicit data
connections RW1,

RW2

Block -2Block -1

R1 R2

C1 C2

Establish
Synchronization

RW1, RW2

Recoding: Exposing Communication (3)

Behavioral
Model

Read port

Write port

Implicit
Dependency

• Use message passing channels
instead of variables
– Defines synchronization scheme

– Guides exploration tools

• Procedure
– Create a typed synchronization channel

– Replace the ports
corresponding to the original variable
with the channel interface type

– Modify each access to the variable
to call the appropriate interface function
of the channel

• read() / receive()

• write() / send()

RW2

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 24

Model Recoding: References

• [ASPDAC’07] P. Chandraiah, J. Peng, R. Dömer, "Creating Explicit Communication in SoC
Models Using Interactive Re-Coding", Proceedings of the Asia and South Pacific Design
Automation Conference 2007, Yokohama, Japan, January 2007.

• [IESS’07] P. Chandraiah, R. Dömer, "An Interactive Model Re-Coder for Efficient SoC
Specification", Proceedings of the International Embedded Systems Symposium,
"Embedded System Design: Topics, Techniques and Trends" (ed. A. Rettberg, M. Zanella,
R. Dömer, A. Gerstlauer, F. Rammig), Springer, Irvine, California, May 2007.

• [DAC’07] P. Chandraiah, R. Dömer, "Designer-Controlled Generation of Parallel and
Flexible Heterogeneous MPSoC Specification", Proceedings of the Design Automation
Conference 2007, San Diego, California, June 2007.

• [ISSS+CODES’07] P. Chandraiah, R. Dömer, "Pointer Re-coding for Creating Definitive
MPSoC Models", Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis, Salzburg, Austria, September 2007.

• [ASPDAC’08] P. Chandraiah, R. Dömer, "Automatic Re-coding of Reference Code into
Structured and Analyzable SoC Models", Proceedings of the Asia and South Pacific Design
Automation Conference 2008, Seoul, Korea, January 2008.

• [TCAD’08] P. Chandraiah, R. Dömer, “Code and Data Structure Partitioning for Parallel and
Flexible MPSoC Specification Using Designer-Controlled Re-Coding”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems vol. 27, no. 6, pp. 1078-1090,
June 2008.

• [DATE’09] R. Leupers, A. Vajda, M. Bekooij, S. Ha, R. Dömer, A. Nohl, "Programming
MPSoC Platforms: Road Works Ahead!", Proceedings of Design Automation and Test in
Europe, Nice, France, April 2009.

EECS222: Embedded System Modeling Lecture 11

(c) 2017 R. Doemer 13

EECS 222 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic Edge Detection in a Digital Camera

– Application Source and Documentation:
• http://marathon.csee.usf.edu/edge/edge_detection.html

• http://en.wikipedia.org/wiki/Canny_edge_detector

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 25

golfcart.pgm golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

EECS 222 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic Edge Detection in a Digital Video Camera

– Video taken by a drone hovering over UCI Engineering Plaza
• Available on the server: ~eecs222/public/video/

• High resolution, 2704 by 1520 pixes

• Video length 9 seconds, using 20 extracted frames for test bench model

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 26

EngPlaza001.bmp EngPlaza001_edges.pgm

EECS222: Embedded System Modeling Lecture 11

(c) 2017 R. Doemer 14

Homework Assignment 5

• Task: Structural Model of the Canny Edge Detector
– Convert the application to process a stream of video frames

– Add test bench structure to the SLDL model from Assignment 4

– Choose either SpecC or SystemC for simulation

• Steps
1. Create test bench structure: Stimulus, Platform, Monitor

2. Create platform model: DataIn, DUT, DataOut

3. Localize functions and add loops for stream processing

• Deliverables
– Canny.sc or Canny.cpp (choose one!)

– Canny.txt

• Due
– By next week: May 15, 2017, 12pm (noon!)

EECS222: Embedded System Modeling, Lecture 11 (c) 2017 R. Doemer 27

