
EECS222: Embedded System Modeling Lecture 19

(c) 2017 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 19

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 19 (c) 2017 R. Doemer 2

Lecture 19: Overview

• Course Administration
– Instructor evaluation

– Final exam

• Unified Modeling Language (UML)
– Overview

– Example Diagrams

• EECS 222 Project Discussion
– Assignment 8

– Final technical report



EECS222: Embedded System Modeling Lecture 19

(c) 2017 R. Doemer 2

Course Administration

• Final Course Evaluation
– 9th through 10th week
– May 22, 2017, through June 11, 2017, 11:45pm
– Open until next Sunday night
– Online via EEE evaluation application

• Evaluation of Course and Instructor
– Voluntary
– Anonymous
– Very valuable!

Please help to improve this class!
– Please spend 5 minutes!

EECS222: Embedded System Modeling, Lecture 19 (c) 2017 R. Doemer 3

Course Administration

• Final Exam
– Allocated time

• Wednesday, June 14, 4:00-6:00pm

– Location
• Not applicable, we use electronic submission!

– Format: Final Project Report
• Submission script: ~eecs222/bin/turnin.sh

• Directory name: hw8

• File names: EECS222_Report.pdf
Canny.sc or Canny.cpp

– Hard deadline!
• June 14, 2017, 6pm

EECS222: Embedded System Modeling, Lecture 19 (c) 2017 R. Doemer 4



EECS222: Embedded System Modeling Lecture 19

(c) 2017 R. Doemer 3

EECS222: Embedded System Modeling, Lecture 19 (c) 2017 R. Doemer 5

Unified Modeling Language (UML)

• Status
– UML 2.0: Modeling Language in Software Engineering
– standardized by OMG (Object Management Group) in 1997
– standardized by ISO (Intl. Org. for Standardization) in 2005

• Goals
– Raising the Level of Abstraction
– Modeling of software applications

 before coding!
– Specification of software architecture
– High-level description of software architecture to enable

• scalability
• security
• robustness
• maintenance
• extendability
• code reuse

– Model Driven Architecture (MDA)

EECS222: Embedded System Modeling, Lecture 19 (c) 2017 R. Doemer 6

Unified Modeling Language (UML)

• What is UML?
– 13 standard diagrams

• Specification
• Design
• Documentation

– Graphical representation of …
• Software architecture
• Software structure
• Software behavior
• Object relations
• ...

 Not executable!
– Commercial tools available for …

• Graphical capture
• Editing
• Code generation (template code)



EECS222: Embedded System Modeling Lecture 19

(c) 2017 R. Doemer 4

EECS222: Embedded System Modeling, Lecture 19 (c) 2017 R. Doemer 7

Unified Modeling Language (UML)

• UML Standard Diagrams
– Structure Diagrams

• Class Diagram
• Object Diagram
• Component Diagram
• Composite Structure Diagram
• Package Diagram
• Deployment Diagram

– Behavior Diagrams
• Use Case Diagram
• Activity Diagram
• State Machine Diagram

– Interaction Diagrams
• Sequence Diagram
• Communication Diagram
• Timing Diagram
• Interaction Overview Diagram

EECS222: Embedded System Modeling, Lecture 19 (c) 2017 R. Doemer 8

Unified Modeling Language (UML)

• UML Resources
– Online Documents

• Object Management Group (OMG)
– www.uml.org

– Online Tutorials
– https://www.tutorialspoint.com/uml/

– http://www.sparxsystems.com/uml-tutorial.html

– Invited Talk at UCI in 2004
• Dr. Wolfgang Mueller, C-LAB, Paderborn, Germany

– Lecture19_UML.pdf



EECS222: Embedded System Modeling Lecture 19

(c) 2017 R. Doemer 5

EECS 222 Project Discussion

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic Edge Detection in a Digital Video Camera

– Video taken by a drone hovering over UCI Engineering Plaza
• Available on the server: ~eecs222/public/video/

• High resolution, 2704 by 1520 pixes

• Video length 9 seconds, using 20 extracted frames for test bench model

EECS222: Embedded System Modeling, Lecture 19 (c) 2017 R. Doemer 9

EngPlaza001.bmp EngPlaza001_edges.pgm

Project: Homework Assignment 8

• Task: Throughput optimization of Canny Edge Decoder 
– Back-annotate more realistic delays and observe throughput

– Maximize the pipeline throughput by using fixed-point arithmetic

• Steps
1. Improve test bench with logging of frames per second (FPS)

2. Estimate timing based on allocated CPU cores and ASICs

3. Replace floating-point with fixed-point arithmetic in NMS block

4. Back-annotate the improved NMS stage delay

5. Final technical project report

• Deliverables
– Canny.sc or Canny.cpp (choose one!)

– EECS222_Report.pdf (in lieu of final exam)

• Due: By next week: June 14, 2017, 6pm (Thursday evening)

EECS222: Embedded System Modeling, Lecture 19 (c) 2017 R. Doemer 10



EECS222: Embedded System Modeling Lecture 19

(c) 2017 R. Doemer 6

EECS222: Embedded System Modeling, Lecture 19 (c) 2017 R. Doemer 11

Project: Final Technical Report

• Final Technical Project Report
– Title

• Specification and Modeling of a Canny Edge Detector
for System-on-Chip Design

– Contents

• “Story” of the course project
– From downloading initial C reference code

– Via describing and simulating in SpecC or SystemC SLDL

– To modeling and optimization for SoC design

• Use the results of Assignments 1, and 4 through 8

• Conclude with a summary of the lessons learned

– Length
• About 12 pages (including title page, figures, and references)

EECS222: Embedded System Modeling, Lecture 19 (c) 2017 R. Doemer 12

Project: Outline of Final Technical Report

1. Title page
• Project title, author, date, course number and title
• Abstract

2. Introduction
• System-level modeling and design
• Essential concepts and coverage in SpecC/SystemC SLDL

3. Case study using the Canny Edge Detector application
• Obtaining and studying the Canny application
• Creating a simulatable model in SpecC/SystemC SLDL
• Creating structural hierarchy with test bench
• Pipelining and parallelization
• Performance estimation and throughput optimization

4. Summary and Conclusion
• Lessons Learned
• Future work

5. References


