
EECS222A: SoC Description and Modeling Lecture 3

(c) 2012 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 3

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 2

Lecture 3: Overview

• Review
– SLDL goals and requirements

• Introduction to the SpecC Language (Part 1)
– Foundation

– Types

– Structural hierarchy

– Behavioral hierarchy

• Discussion: Homework Assignment 1
– Project setup, study of application

EECS222A: SoC Description and Modeling Lecture 3

(c) 2012 R. Doemer 2

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 3

System-Level Description Languages

• Goals and Requirements
– Formality

• Formal syntax and semantics
– Executability

• Validation through simulation
– Synthesizability

• Implementation in HW and/or SW
• Support for IP reuse

– Modularity
• Hierarchical composition
• Separation of concepts

– Completeness
• Support for all concepts found in embedded systems

– Orthogonality
• Orthogonal constructs for orthogonal concepts

– Simplicity
• Minimality

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 4

System-Level Description Languages

Behavioral
hierarchy
Structural
hierarchy

Concurrency

Synchronization

Exception
handling

Timing

State
transitions
Composite
data types

not supported partially supported supported

• Requirements• Requirements supported by existing languages

EECS222A: SoC Description and Modeling Lecture 3

(c) 2012 R. Doemer 3

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 5

SpecC Language Overview

• Lecture 3
– Foundation, types

– Structural hierarchy

– Behavioral hierarchy

• Lecture 4
– State transitions

– Exception handling

– Communication and synchronization

• Lecture 5
– Timing

– Library support and persistent annotation

• Lecture 12 (tentative)
– Register Transfer Level (RTL) support

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 6

The SpecC Language

• Foundation: ANSI-C
– Software requirements are fully covered

– SpecC is a true superset of ANSI-C

– Every C program is a SpecC program

– Leverage of large set of existing programs

– Well-known

– Well-established

EECS222A: SoC Description and Modeling Lecture 3

(c) 2012 R. Doemer 4

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 7

The SpecC Language

• Foundation: ANSI-C
– Software requirements are fully covered

– SpecC is a true superset of ANSI-C

– Every C program is a SpecC program

– Leverage of large set of existing programs

– Well-known

– Well-established

• SpecC has extensions needed for hardware
– Minimal, orthogonal set of concepts

– Minimal, orthogonal set of constructs

• SpecC is a real language
– Is not just a class library (as SystemC)

– Relies on dedicated compiler and static analysis

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 8

The SpecC Language

• ANSI-C
– Program is set of functions

– Execution starts from
function main()

/* HelloWorld.c */

#include <stdio.h>

int main(void)
{
printf(“Hello World!\n”);
return 0;

}

EECS222A: SoC Description and Modeling Lecture 3

(c) 2012 R. Doemer 5

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 9

The SpecC Language

• ANSI-C
– Program is set of functions

– Execution starts from
function main()

• SpecC
– Program is set of behaviors,

channels, and interfaces

– Execution starts from
behavior Main.main()

/* HelloWorld.c */

#include <stdio.h>

int main(void)
{
printf(“Hello World!\n”);
return 0;

}

// HelloWorld.sc

#include <stdio.h>

behavior Main
{
int main(void)
{
printf(“Hello World!\n”);
return 0;

}
};

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 10

The SpecC Language

• SpecC types
– Support for all ANSI-C types

• predefined types (int, float, double, …)

• composite types (arrays, pointers)
• user-defined types (struct, union, enum)

– Boolean type: Explicit support of truth values
• bool b1 = true;

• bool b2 = false;

– Bit vector type: Explicit support of bit vectors of arbitrary length
• bit[15:0] bv = 1111000011110000b;

– Event type: Support of synchronization
• event e;

– Buffered and signal types: Explicit support of RTL concepts
• buffered[clk] bit[32] reg;

• signal bit[16] address;

EECS222A: SoC Description and Modeling Lecture 3

(c) 2012 R. Doemer 6

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 11

The SpecC Language

• Bit vector type
– signed or unsigned
– arbitrary length

– standard operators
• logical operations

• arithmetic operations

• comparison operations

• type conversion

• type promotion

– concatenation operator
• a @ b

– slice operator
• a[l:r]

typedef bit[7:0] byte; // type definition
byte a;
unsigned bit[16] b;

bit[31:0] BitMagic(bit[4] c, bit[32] d)
{
bit[31:0] r;

a = 11001100b; // constant
b = 1111000011110000ub; // assignment

b[7:0] = a; // sliced access
b = d[31:16];

if (b[15]) // single bit
b[15] = 0b; // access

r = a @ d[11:0] @ c // concatenation
@ 11110000b;

a = ~(a & 11110000b); // logical op.
r += 42 + 3*a; // arithmetic op.

return r;
}

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 12

The SpecC Language

• Basic structure
– Top behavior

– Child behaviors

– Channels

– Interfaces

– Variables (wires)

– Ports
b1 b2

v1

c1
B

p1 p2

Behavior Ports InterfacesChannel

Variable
(wire)Child behaviors

EECS222A: SoC Description and Modeling Lecture 3

(c) 2012 R. Doemer 7

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 13

The SpecC Language

• Structural hierarchy
interface I1
{
bit[63:0] Read(void);
void Write(bit[63:0]);

};

channel C1 implements I1;

behavior B1(in int, I1, out int);

behavior B(in int p1, out int p2)
{
int v1;
C1 c1;
B1 b1(p1, c1, v1),

b2(v1, c1, p2);

void main(void)
{ par { b1.main();

b2.main();
}

}
};

b1 b2

v1

c1
B

p1 p2

b1;
b2;

SpecC 2.0:
if b is a behavior instance,
b; is equivalent to b.main();

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 14

The SpecC Language

• Typical test bench
– Top-level behavior: Main

– Stimulus provides test vectors

– Design under test (DUT) represents the target SoC

– Monitor observes and checks outputs

Stimulus DUT

v2

Monitor

v1

v4

v3
Main

EECS222A: SoC Description and Modeling Lecture 3

(c) 2012 R. Doemer 8

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 15

The SpecC Language

• Behavioral hierarchy

B_seq

b1

b3

b2

B_fsm

b1

b3

b2

b5 b6

b4

behavior B_seq
{
B b1, b2, b3;

void main(void)
{ b1;

b2;
b3;

}
};

behavior B_fsm
{
B b1, b2, b3,
b4, b5, b6;

void main(void)
{ fsm { b1:{…}

b2:{…}
…}

}
};

Sequential
execution

FSM
execution

Concurrent
execution

Pipelined
execution

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 16

behavior B_pipe
{
B b1, b2, b3;

void main(void)
{ pipe{ b1;

b2;
b3; }

}
};

The SpecC Language

• Behavioral hierarchy

B_par

b1

b3

b2

B_seq

b1

b3

b2

B_fsm

b1

b3

b2

b5 b6

b4

B_pipe

b1

b3

b2

behavior B_seq
{
B b1, b2, b3;

void main(void)
{ b1;

b2;
b3;

}
};

behavior B_fsm
{
B b1, b2, b3,
b4, b5, b6;

void main(void)
{ fsm { b1:{…}

b2:{…}
…}

}
};

behavior B_par
{
B b1, b2, b3;

void main(void)
{ par{ b1;

b2;
b3; }

}
};

Sequential
execution

FSM
execution

Concurrent
execution

Pipelined
execution

EECS222A: SoC Description and Modeling Lecture 3

(c) 2012 R. Doemer 9

EECS 222 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic Edge Detection in a Digital Camera

– Application Source and Documentation:
• http://marathon.csee.usf.edu/edge/edge_detection.html

• http://en.wikipedia.org/wiki/Canny_edge_detector

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 17

golfcart.pgm golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 18

Discussion: Homework Assignment 1

• Administration
– EECS Department Linux Servers

• crystalcove.eecs.uci.edu, and others

• Linux environment (CentOS 6.8)
• Access via secure shell protocol (SSH)

– Accounts
• User ID same as your UCInetID

• Password same as your EEE password

– Login and make yourself familiar with
• Command-line tools and GUI tools (which need X client)

• Text editing and C/C++ programming

• Image processing tools

EECS222A: SoC Description and Modeling Lecture 3

(c) 2012 R. Doemer 10

Discussion: Homework Assignment 1

• Task: Introduction to Application Example
– Canny Edge Detector

– Algorithm for edge detection in digital images

• Steps
1. Setup your Linux programming environment

2. Download, adjust, and compile the application C code
with the GNU C compiler (gcc)

3. Study the application

• Deliverables
– None at this time (preparation for following assignments)

• Due
– By next week: April 10, 2017, 12pm (noon!)

EECS222: Embedded System Modeling, Lecture 3 (c) 2017 R. Doemer 19

