
EECS222: Embedded System Modeling Lecture 6

(c) 2017 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 6

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 6 (c) 2017 R. Doemer 2

Lecture 6: Overview

• SystemC System Description Language
– SystemC Overview

– Resources

• Introduction to the SystemC Language (Part 1)
– Presentation by Stuart Swan, Cadence

• Homework Assignment 3
– Producer-consumer example in SystemC

EECS222: Embedded System Modeling Lecture 6

(c) 2017 R. Doemer 2

EECS222: Embedded System Modeling, Lecture 6 (c) 2017 R. Doemer 3

SystemC Overview

• Goals
– Common C++ Modeling Platform

• System level modeling

• Register Transfer Level (RTL) modeling

– Seamless Co-Design of Hardware and Software

– Intellectual Property (IP) Reuse

– Free licensing, Open Source

– Standard, de-facto and official

• Accellera Systems Initiative
– Formerly Open SystemC Initiative (OSCI)

– Standardization body and consortium of leading companies
• Synopsys, Cadence, CoWare, Frontier, ...

• Intel, AMD, Qualcomm, Infineon, NEC, …

– Open community

EECS222: Embedded System Modeling, Lecture 6 (c) 2017 R. Doemer 4

SystemC Overview

• System-Level Description Language
– C++ class library, layered software architecture

– Hierarchy of modules connected by ports

– Communication via interfaces and channels

– Discrete Event Simulation

• Abstraction Levels, Modeling Methodology
– Untimed Model

– Transaction-level Model

– Bus-functional Model

– Cycle-accurate Model

EECS222: Embedded System Modeling Lecture 6

(c) 2017 R. Doemer 3

SystemC Overview

• Online Resources (EECS 222 course website)
– Accellera Systems Initiative, SystemC Standardization Body

– SystemC Standard Language Reference Manual
• IEEE 1666-2011 (free download)

 SystemC: From the Ground Up (2nd edition)
 Text book (free download from UCI network)

– SystemC 2.0:
• Introduction, functional specification, user's guide

– SystemC 2.1:
• Overview and features

– SystemC 2.3.1: (current version, installed on servers)
• New features 2011

– SystemC TLM-2.0:
• Introduction, whitepaper, and requirements

EECS222: Embedded System Modeling, Lecture 6 (c) 2017 R. Doemer 5

EECS222: Embedded System Modeling, Lecture 6 (c) 2017 R. Doemer 6

Introduction to SystemC

• Presentation by Stuart Swan,
Cadence, 2002
– Goals and Requirements

– History and Organization

– Versions, Contents, Coverage

– Language Architecture

– Modeling, Models of Computation, Examples

– Communication Refinement

– Outlook

• Example:
– simple_fifo.cpp

EECS222: Embedded System Modeling Lecture 6

(c) 2017 R. Doemer 4

EECS222: Embedded System Modeling, Lecture 6 (c) 2017 R. Doemer 7

Homework Assignment 3

• Task: Introduction to SystemC Language and Simulation
• Steps

– SystemC library installed at /opt/pkg/systemc-2.3.1/
– Study and simulate the simple_fifo reference example
– Build and simulate a Producer-Consumer example

• Producer Prod should send string “Apples and Oranges”
character by character to the consumer Cons

• Translate the SpecC model of Assignment 2 to SystemC
– Reference model ~eecs222/public/ProdCons.sc

• Use the same structure and functionality
• Use the same protocol channel with Ack, Req, and Data

 Hint: Use delta notifications, e.g. Ack.notify(SC_ZERO_TIME)

• Deliverables
– Source and log file: ProdCons.cpp, ProdCons.log

• Due
– April 24, 2017, 12pm (noon!)

EECS222: Embedded System Modeling, Lecture 6 (c) 2017 R. Doemer 8

Homework Assignment 2 Solution

• Start with Sender-Receiver Example
– Add behavior Main with structural connectivity

– Sender S becomes Prod, with loop over string

– Receiver R becomes Cons, with loop

– Type float becomes char

– Compile and simulate

– Create log file and submit

behavior S(IS Port)
{
float X;
void main(void)
{ ...
Port.Send(X);
...

}
};

behavior R(IR Port)
{
float Y;
void main(void)
{...
Y=Port.Receive();
...
}
};

interface IS
{
void Send(float);
};
interface IR
{
float Receive(void);
};

Prod Cons

Ack

Data

Req

Main

C

IS IR

channel C
implements IS, IR

{
event Req;
float Data;
event Ack;

void Send(float X)
{ Data = X;
notify Req;
wait Ack;

}
float Receive(void)
{ float Y;
wait Req;
Y = Data;
notify Ack;
return Y;

}
};

