
EECS222: Embedded System Modeling Lecture 9

(c) 2017 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 9

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 2

Lecture 9: Overview

• SLDL Semantics

• Execution and Simulation Semantics
– Motivating Examples

• Simulation Semantics
– Discrete Event Simulation (DES)

– DES Algorithm for SpecC

• Homework Assignment 4
– SLDL Model of the Canny Edge Detector

EECS222: Embedded System Modeling Lecture 9

(c) 2017 R. Doemer 2

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 3

SLDL Semantics

• Essential Concepts in Embedded System Models
– Behavioral hierarchy

• Concurrency, state transitions, exception handling

– Structural hierarchy and connectivity

– Synchronization and communication

– Timing

 SLDL must support these concepts in syntax and semantics

• Language semantics define the meaning of constructs
– Execution semantics (for modeling, simulation, and synthesis)

– Deterministic vs. non-deterministic behavior

– Preemptive vs. non-preemptive concurrency

– Atomic operations

– Safe synchronization and communication

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 4

SLDL Semantics

• Language Semantics are needed for …
– System designer

• Description and modeling

– Electronic Design Automation (EDA) tools
• Validation (compilation, simulation, estimation)
• Analysis (verification, property checking)
• Synthesis (implementation)

– Documentation and standardization

• Objective
 Clearly define the execution semantics of the SLDL

• Requirements and Goals
– Precision (no ambiguities)
– Abstraction (no implementation details)
– Formality (enable formal reasoning)
– Simplicity (easy understanding)

EECS222: Embedded System Modeling Lecture 9

(c) 2017 R. Doemer 3

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 5

SLDL Semantics Definition

• Example: SpecC language (SystemC is similar)
– Documentation

• Language Reference Manual (LRM)
 set of rules written in English (somewhat formal)
• Abstract simulation algorithm
 set of valid implementations (abstract, but not general)

– Reference implementation
• SpecC Reference Compiler and Simulator
 one instance of a valid implementation (very specific)
• Compliance test bench
 set of specific test cases (specific, but incomplete)

– Formal execution semantics
• Time-interval formalism
 rule-based formalism (mathematical, but incomplete)
• Abstract State Machines
 fully formal approach (algebraic notation, not easy to understand)

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 6

Execution and Simulation Semantics

• Motivating Example 1
– Given:

– What is the value of x after the execution of B?

– Answer: x = 6

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

b1;
b2;

}
};

behavior B1(int x)
{

void main(void)
{

x = 5;
}

};

behavior B2(int x)
{

void main(void)
{

x = 6;
}

};

EECS222: Embedded System Modeling Lecture 9

(c) 2017 R. Doemer 4

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 7

Execution and Simulation Semantics

• Motivating Example 2
– Given:

– What is the value of x after the execution of B?

– Answer: The model is non-deterministic
(x may be 5, or 6, or any other value!)

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(int x)
{

void main(void)
{

x = 5;
}

};

behavior B2(int x)
{

void main(void)
{

x = 6;
}

};

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 8

Execution and Simulation Semantics

• Motivating Example 3
– Given:

– What is the value of x after the execution of B?

– Answer: x = 5

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(int x)
{

void main(void)
{

waitfor 10;
x = 5;

}
};

behavior B2(int x)
{

void main(void)
{

x = 6;
}

};

EECS222: Embedded System Modeling Lecture 9

(c) 2017 R. Doemer 5

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 9

Execution and Simulation Semantics

• Motivating Example 4
– Given:

– What is the value of x after the execution of B?

– Answer: The model is non-deterministic
(x may be 5, or 6, or any other value!)

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(int x)
{

void main(void)
{

waitfor 10;
x = 5;

}
};

behavior B2(int x)
{

void main(void)
{

waitfor 10;
x = 6;

}
};

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 10

Execution and Simulation Semantics

• Motivating Example 5
– Given:

– What is the value of x after the execution of B?

– Answer: x = 6

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

wait e;
x = 6;

}
};

EECS222: Embedded System Modeling Lecture 9

(c) 2017 R. Doemer 6

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 11

Execution and Simulation Semantics

• Motivating Example 6
– Given:

– What is the value of x after the execution of B?

– Answer: x = 6

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

notify e;
x = 5;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

wait e;
x = 6;

}
};

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 12

Execution and Simulation Semantics

• Motivating Example 7
– Given:

– What is the value of x after the execution of B?

– Answer: x = 6

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

waitfor 10;
x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

wait e;
x = 6;

}
};

EECS222: Embedded System Modeling Lecture 9

(c) 2017 R. Doemer 7

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 13

Execution and Simulation Semantics

• Motivating Example 8
– Given:

– What is the value of x after the execution of B?

– Answer: B never terminates
(the event is lost!)

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

waitfor 10;
wait e;
x = 6;

}
};

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 14

Simulation Semantics

• Discrete Event Simulation (DES) Algorithm for SpecC
– available in LRM (appendix), good for documentation

 abstract definition (defines a set of valid implementations)

 not general (possibly incomplete)

• Definitions:
– At any time, each thread t is in one of the following sets:

• READY: set of threads ready to execute (initially root thread)
• WAIT: set of threads suspended by wait (initially Ø)
• WAITFOR: set of threads suspended by waitfor (initially Ø)

– Notified events are stored in a set N
• notify e1 adds event e1 to N

• wait e1 will wakeup when e1 is in N

• Consumption of event e means event e is taken out of N

• Expiration of notified events means N is set to Ø

EECS222: Embedded System Modeling Lecture 9

(c) 2017 R. Doemer 8

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 15

Simulation Semantics

• Discrete Event Simulation (DES) Algorithm for SpecC

Select thread tREADY, execute t

Add notified events to Nnotify

Move tREADY to WAIT

Move tREADY to WAITFOR

wait

waitfor

READY=Ø

Set N=Ø

READY=Ø

Update simulation time, move earliest tWAITFOR to READY

READY=Ø

Stop

Start

NO

YES

NO

YES

NO

YES

YES

YES

YES

Move all tWAIT waiting for events eN to READY

NO

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 16

Simulation Semantics

• Discrete Event Simulation (DES) Algorithm for SpecC
– Conforms to general Discrete Event (DE) Simulation

• utilizes delta-cycle mechanism (i.e. inner event loop)

• closely matches execution semantics of other languages

– SystemC

– VHDL

– Verilog

– Features
• clearly specifies the simulation semantics

• is easy to understand

• is straight-forward to implement

– Generality
• is one valid implementation of the semantics

• other valid implementations may exist as well

EECS222: Embedded System Modeling Lecture 9

(c) 2017 R. Doemer 9

Simulation Semantics

• Discrete Event Simulation (DES) Algorithm for SystemC

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 17

EECS 222 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic Edge Detection in a Digital Camera

– Application Source and Documentation:
• http://marathon.csee.usf.edu/edge/edge_detection.html

• http://en.wikipedia.org/wiki/Canny_edge_detector

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 18

golfcart.pgm golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

EECS222: Embedded System Modeling Lecture 9

(c) 2017 R. Doemer 10

Review: Homework Assignment 1

• Task: Introduction to Application Example
– Canny Edge Detector

– Algorithm for edge detection in digital images

• Steps
1. Setup your Linux programming environment

2. Download, adjust, and compile the application C code
with the GNU C compiler (gcc)

3. Study the application

• Deliverables
– None at this time (preparation for following assignments)

• Due
– By next week: April 10, 2017, 12pm (noon!)

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 19

Homework Assignment 4

• Task: SLDL Model of the Canny Edge Detector
– Convert ANSI-C source code into SLDL model

– Choose either SpecC or SystemC for simulation

• Steps
1. Fix the off-by-one bug in the non_max_supp function

2. Clean-up the code for compilation without warnings

3. Fix configuration parameters to compile-time constants

4. Remove or replace dynamic memory allocation

• Deliverables
– Canny.sc or Canny.cpp (choose one!)

– Canny.txt

• Due
– By next week: May 8, 2017, 12pm (noon!)

EECS222: Embedded System Modeling, Lecture 9 (c) 2017 R. Doemer 20

