
Version 2.0
User’s Guide

Update for SystemC 2.0.1

Copyright (c) 1996-2002
by all Contributors.
All Rights reserved.

Copyright Notice

Copyright (c) 1996-2002 by all Contributors. All Rights reserved. This software
and documentation are furnished under the SystemC Open Source License (the
License). The software and documentation may be used or copied only in
accordance with the terms of the License agreement.

Right to Copy Documentation

The License agreement permits licensee to make copies of the documentation.
Each copy shall include all copyrights, trademarks, service marks, and
proprietary rights notices, if any.

Destination Control Statement

All technical data contained in this publication is subject to the export control
laws of the United States of America. Disclosure to nationals of other countries
contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and comply to them.

Disclaimer

THE CONTRIBUTORS AND THEIR LICENSORS MAKE NO WARRANTY
OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

SystemC and the SystemC logo are trademarks of Synopsys, Inc.

Bugs and Suggestions

Please report bugs and suggestions about this document to

http://www.systemc.org

SystemC 2.0 User’s Guide iii

Contents

CHAPTER 1 Introduction 1

Using Executable Specifications 2

SystemC Highlights 3

Current System Design Methodology 4

SystemC Design Methodology 5

Compatibility with Earlier Versions of SystemC 7

CHAPTER 2 Starting with a Simple Example 9

Simplex Data Protocol 9

C/C++ Model 11

SystemC Model 15

User Defined Packet Type 16

Transmit Module 17

Channel Module 22

Receiver Module 25

iv SystemC 2.0 User’s Guide

Display Module 28

Timer Module 29

Putting it all together - The main routine 31

Compiling the Example for UNIX 35

Compiling the Example for Windows 36

Executing the Example 37

CHAPTER 3 Modules and Hierarchy 39

Module Ports 40

Module Signals 41

Internal Data Storage 44

Processes 46

Module Constructors 47

TestBenches 49

CHAPTER 4 Processes 53

Basics 54

Method Process 54

Thread Processes 56

Clocked Thread Process 59

Wait Until 63

Watching 64

Local Watching 67

CHAPTER 5 Ports and Signals 71

Reading and Writing Ports and Signals 74

Array Ports and Signals 74

Resolved Logic Vectors 75

Resolved Vector Signals 77

Signal Binding 78

SystemC 2.0 User’s Guide v

Clocks 80

CHAPTER 6 Data Types 83

Type sc_bit 84

Type sc_logic 85

Fixed Precision Unsigned and Signed Integers 87

Speed Issues 90

Arbitrary Precision Signed and Unsigned Integer Types 91

Arbitrary Length Bit Vector 93

Arbitrary Length Logic Vector 95

Logic Vector Speed Issues 97

User Defined Type Issues 97

CHAPTER 7 Fixed Point Types 101

Word Length and Integer Word Length 103

Quantization Modes 105

SC_RND 106

SC_RND_ZERO 108

SC_RND_MIN_INF 110

SC_RND_INF 112

SC_RND_CONV 114

SC_TRN 117

SC_TRN_ZERO 119

Overflow Modes 121

MIN and MAX 121

SC_SAT 122

SC_SAT_ZERO 124

SC_SAT_SYM 126

SC_WRAP 128

SC_WRAP, n_bits = 0 128

SC_WRAP, n_bits > 0 130

vi SystemC 2.0 User’s Guide

SC_WRAP_SM 132

SC_WRAP_SM, n_bits = 0 132

SC_WRAP_SM, n_bits > 0 134

SC_WRAP_SM, n_bits = 1 135

Fast Fixed Point Types 139

Simple Examples 140

Type sc_fxtype_params 140

Type sc_fxtype_context 142

Operators 146

Bit Selection 146

Part Selection 147

Type Casting 147

Useful State Information 147

Converting Fixed Point Types to Strings 148

Arrays of Fixed Point Types 149

CHAPTER 8 Simulation and Debugging Using SystemC 153

Advanced Topic: SystemC Scheduler 153

Simulation Control 154

Tracing Waveforms 157

Debugging SystemC 160

APPENDIX A VHDL Designer’s Guide 163

DFF Examples 163

Shifter 166

Counter 169

State Machine 171

Memory 178

APPENDIX B Verilog Designers’ Guide 181

SystemC 2.0 User’s Guide vii

DFF Examples 181

Asynchronous Reset D Flip Flop 182

Shifter 184

Counter 187

State Machine 189

Memory 195

viii SystemC 2.0 User’s Guide

SystemC 2.0 User’s Guide 1

CHAPTER 1 Introduction

NOTE: This document does not yet describe the new SystemC 2.0 specific language
features. Please refer to the Functional Specification for SystemC 2.0 document.

SystemC is a C++ class library and a methodology that you can use to effectively
create a cycle-accurate model of software algorithms, hardware architecture, and
interfaces of your SoC (System On a Chip) and system-level designs. You can use
SystemC and standard C++ development tools to create a system-level model,
quickly simulate to validate and optimize the design, explore various algorithms,
and provide the hardware and software development team with an executable spec-
ification of the system. An executable specification is essentially a C++ program
that exhibits the same behavior as the system when executed.

C or C++ are the language choice for software algorithm and interface specifica-
tions because they provide the control and data abstractions necessary to develop
compact and efficient system descriptions. Most designers are familiar with these
languages and the large number of development tools associated with them.

The SystemC Class Library provides the necessary constructs to model system
architecture including hardware timing, concurrency, and reactive behavior that are
missing in standard C++. Adding these constructs to C would require proprietary
extensions to the language, which is not an acceptable solution for the industry. The
C++ object-oriented programming language provides the ability to extend the lan-
guage through classes, without adding new syntactic constructs. SystemC provides

Introduction

2 SystemC 2.0 User’s Guide

these necessary classes and allows designers to continue to use the familiar C++
language and development tools.

If you are familiar with the C++ programming language, you can learn to program
with SystemC by understanding the additional semantics introduced by the Sys-
temC classes; no additional syntax has to be learned. If you are one of the many that
are more familiar with the C programming language, you need to learn some C++
syntax in addition to the semantics introduced by the classes. The use of C++ has
been kept to a minimum in SystemC. If you are familiar with the Verilog and
VHDL hardware description languages and the C programming language, learning
SystemC will be easy.

This document describes how to use the SystemC Class Library version 2.0 to cre-
ate an executable specification for your system-level designs.

Using Executable Specifications

There are many benefits to creating an accurate executable specification of your
complex system at the beginning of your design flow. These benefits are

• An executable specification avoids inconsistency and errors and helps ensure
completeness of the specification. This is because in creating an executable
specification, you are essentially creating a program that behaves the same way
as the system. The process of creating the program unearths inconsistencies and
errors, and the process of testing the program helps ensure completeness of the
specification.

• An executable specification ensures unambiguous interpretation of the specifi-
cation. Whenever implementers are in doubt about the design, they can run the
executable specification to determine what the system is supposed to be doing.

• An executable specification helps validate system functionality before imple-
mentation begins.

• An executable specification helps create early performance models of the sys-
tem and validate system performance.

• The testbench used to test the executable specification can be refined or used as
is to test the implementation of the specification. This can provide tremendous
benefits to implementers and drastically reduce the time for implementation
verification.

SystemC 2.0 User’s Guide 3

SystemC Highlights

SystemC Highlights

SystemC supports hardware-software co-design and the description of the architec-
ture of complex systems consisting of both hardware and software components. It
supports the description of hardware, software, and interfaces in a C++ environ-
ment. The following features of SystemC version 2.0 allow it to be used as a co-
design language:

• Modules: SystemC has a notion of a container class called a module. This is a
hierarchical entity that can have other modules or processes contained in it.

• Processes: Processes are used to describe functionality. Processes are contained
inside modules. SystemC provides three different process abstractions to be
used by hardware and software designers.

• Ports: Modules have ports through which they connect to other modules. Sys-
temC supports single-direction and bidirectional ports.

• Signals: SystemC supports resolved and unresolved signals. Resolved signals
can have more than one driver (a bus) while unresolved signals can have only
one driver.

• Rich set of port and signal types: To support modeling at different levels of
abstraction, from the functional to the RTL, SystemC supports a rich set of port
and signal types. This is different than languages like Verilog that only support
bits and bit-vectors as port and signal types. SystemC supports both two-valued
and four-valued signal types.

• Rich set of data types: SystemC has a rich set of data types to support multiple
design domains and abstraction levels. The fixed precision data types allow for
fast simulation, the arbitrary precision types can be used for computations with
large numbers, and the fixed-point data types can be used for DSP applications.
SystemC supports both two-valued and four-valued data types. There are no
size limitations for arbitrary precision SystemC types.

• Clocks: SystemC has the notion of clocks (as special signals). Clocks are the
timekeepers of the system during simulation. Multiple clocks, with arbitrary
phase relationship, are supported.

• Cycle-based simulation: SystemC includes an ultra light-weight cycle-based
simulation kernel that allows high-speed simulation.

• Multiple abstraction levels: SystemC supports untimed models at different lev-
els of abstraction, ranging from high-level functional models to detailed clock
cycle accurate RTL models. It supports iterative refinement of high level models
into lower levels of abstraction.

Introduction

4 SystemC 2.0 User’s Guide

• Communication protocols: SystemC provides multi-level communication
semantics that enable you to describe SoC and system I/O protocols with differ-
ent levels for abstraction.

• Debugging support: SystemC classes have run-time error checking that can be
turned on with a compilation flag.

• Waveform tracing: SystemC supports tracing of waveforms in VCD, WIF, and
ISDB formats.

Current System Design Methodology

The current system design methodology starts with a system engineer writing a C
or C++ model of the system to verify the concepts and algorithms at the system
level. After the concepts and algorithms are validated, the parts of the C/C++ model
to be implemented in hardware are manually converted to a VHDL or Verilog
description for actual hardware implementation. This is shown in the figure below:

System Level Model
C, C++

Analysis

Results

Manual Conversion

VHDL/Verilog

Simulation

Synthesis

Rest of Process

Refine

SystemC 2.0 User’s Guide 5

SystemC Design Methodology

There are a number of problems with this approach.

Manual Conversion from C to HDL Creates Errors

With the current methodology, the designer creates the C model, verifies that the C
model works as expected, and then translates the design manually into an HDL.
This process is very tedious and error prone.

Disconnect Between System Model and HDL Model

After the model is converted to HDL, the HDL model becomes the focus of devel-
opment. The C model quickly becomes out of date as changes are made. Typically
changes are made only to the HDL model and not implemented in the C model.

Multiple System Tests

Tests that are created to validate the C model functionality typically cannot be run
against the HDL model without conversion. Not only does the designer have to
convert the C model to HDL, but the test suite has to be converted to the HDL envi-
ronment as well.

For the parts of the original model to be implemented in software, the model has to
be rewritten with calls to an RTOS. The model is the simulated and verified with an
RTOS emulator. Though parts of the original code can be reused, the change in
abstraction from the original model to an RTOS-based model requires significant
manual recoding and verifying the changes becomes a significant problem.

SystemC Design Methodology

The SystemC design approach offers many advantages over the traditional
approach for system level design. The SystemC design methodology for hardware
is shown in the figure below:

Introduction

6 SystemC 2.0 User’s Guide

This technique has a number of advantages over the current design methodology,
including the following:

Refinement Methodology

With the SystemC approach, the design is not converted from a C level description
to an HDL in one large effort. The design is slowly refined in small sections to add
the necessary hardware and timing constructs to produce a good design. Using this
refinement methodology, the designer can more easily implement design changes
and detect bugs during refinement.

Written in a Single Language

Using the SystemC approach, the designer does not have to be an expert in multiple
languages. SystemC allows modeling from the system level to RTL, if necessary.

SystemC Model

Simulation

Refinement

Synthesis

Rest of Process

SystemC 2.0 User’s Guide 7

Compatibility with Earlier Versions of SystemC

The SystemC approach provides higher productivity because the designer can
model at a higher level. Writing at a higher level can result in smaller code, that is
easier to write and simulates faster than traditional modeling environments.

Testbenches can be reused from the system level model to the RTL model saving
conversion time. Using the same testbench also gives the designer a higher confi-
dence that the system level and the RTL model implement the same functionality.

Though the current release of SystemC does not have the appropriate constructs to
model RTOS, future version will. That will enable a similar refinement-based
design methodology for the software parts of the system. Software designers will
reap similar benefits as hardware designers.

Compatibility with Earlier Versions of SystemC

SystemC 2.0 is fully backwards compatible with earlier versions of SystemC,
except SystemC versions 0.9x. The following syntax and classes from SystemC
0.9x are no longer supported:

• sc_bool_vector

• sc_logic_vector

• sc_array

• sc_2d

• sc_signal_bool_vector

• sc_signal_logic_vector

• sc_signal_array

• sc_signal_resolved_vector

• sc_channel

• sc_sync

• sc_aproc

• sc_async

Introduction

8 SystemC 2.0 User’s Guide

SystemC 2.0 User’s Guide 9

CHAPTER 2 Starting with a Simple
Example

This section shows you a simple data protocol model example written first in C/
C++. The same model is then implemented in SystemC to show the highlights of
using SystemC, along with instructions for compiling, executing, and debugging
the design.

SystemC syntax and details about usage are described in subsequent chapters.

Simplex Data Protocol

The simplex data protocol is a simple data protocol used to transfer data from one
device to another in a single direction. (A duplex data protocol would transfer data
in both directions.) The simplex data protocol can detect transfer errors, and it can
resend data packets to successfully complete the data transfer if errors are detected.

The basic design consists of a transmitter, a receiver, and a model representing the
data transfer medium (or channel). The data transfer medium can model wired and
wireless networks. It can be a simple or complex model of data and error rates to
match the actual physical medium.

A block diagram of the system is shown below:

Starting with a Simple Example

10 SystemC 2.0 User’s Guide

The transmitter sends data packets to the data transfer medium. The data transfer
medium receives those packets, and sends them on to the receiver. The data transfer
medium can introduce errors to represent the actual error rate of the physical
medium.

The receiver receives the data packets from the data transfer medium and analyzes
the data packets for errors. If the data packet has no errors, the receiver generates an
acknowledge packet and sends the acknowledgement packet back to the data trans-
fer medium. The data transfer medium receives the acknowledge packet and sends
this packet to the transmitter. The data transfer medium can introduce errors when
sending the acknowledge packet that causes the acknowledge packet to not be prop-
erly received. After the transmitter has received the acknowledge packet for the
previously sent data packet, the transmitter sends the next packet. This process con-
tinues until all data packets are sent.

This protocol works well for sending data in one direction across a noisy medium.

Transmit Receive
Transfer
Medium

Packets

Acknowledge

SystemC 2.0 User’s Guide 11

C/C++ Model

C/C++ Model

An example model that implements this system in C/C++ is shown below:

frame data; //global data frame storage for Channel

void transmit(void) { //Transmits frames to Channel
 int framenum; // sequence number for frames
 frame s; // Local frame
 packet buffer; // Buffer to hold intermediate data
 event_t event; // Event to trigger actions

//in transmit

 framenum = 1; // initialize sequence numbers

 get_data_fromApp(&buffer); // Get initial data
 // from Application
 while (true) {
 s.info = buffer; // Put data into frame to be sent
 s.seq = framenum; // Set sequence number of frame
 send_data_toChannel(&s); // Pass frame to Channel
 // to be sent
 start_timer(s.seq); // Start timer to wait
 // for acknowledge
 // If timer times out packet was lost
 wait_for_event(&event); // Wait for events from
 // channel and timer
 if (event==new_frame) { // Got an event,
 // check which kind
 get_data_fromChannel(s); // Read frame
 // from channel
 if (s.ack==framenum){ // Did we get the correct
 // acknowledge
 get_data_fromApp(&buffer);
 // Yes, then get more data from
 // application, else send old packet again

 inc(framenum); // Increase framenum
 // for new frame

Starting with a Simple Example

12 SystemC 2.0 User’s Guide

 }
 }
 }
}

void receiver(void) { // Gets frames from channel
 int framenum; // Scratchpad frame number
 frame r,s; // Temp frames to save information
 event_t event; // Event to cause actions in receiver

 framenum = 1; // Start framenum at 1
 while (true) {
 wait_for_event(&event);// Wait for data from channel
 if (event==new_frame){ // Event arrived see
 //if it is a frame event
 get_data_fromChannel(r); // If so get the data
 // from channel
 if (r.seq==framenum) { // Is this the frame
 // we expect
 send_data_toApp(&r.info); // Yes, then send
 //data to application
 inc(framenum); // Get ready for the next frame
 }
 s.ack = framenum -1;
 // Send back an acknowledge that frame
 // was received properly

 send_data_toChannel(&s); // Send acknowledge
 }
 }
}

void send_data_toChannel(frame &f) { // Stores data
 // for channel
 data = f; // Copy frame to storage area
}

void get_data_fromChannel(frame &f) { // Gets data from
 // channel
 int i;

SystemC 2.0 User’s Guide 13

C/C++ Model

 i = rand(); // Generate a random number
 // to cause receive errors

 if (i > 10 && i < 500) {
 // If the random number is between 10 and 500
 // mess up the sequence number in the packet

 data.seq = 0;
 // This will cause the packet reception to
 } // fail - protocol should resend packet

 f = data; // Copy data out of channel
}

The C/C++ model contains a transmit function, a receiver function, and two data
transfer medium (or channel) functions. These channel functions get data from and
put data to the channel (data transfer medium). This description is not a complete
implementation of the entire algorithm but only a fragment to show the typical style
of a C/C++ model. Some of the model complexity is hidden in the wait_for_event()
function calls. These calls are needed to take advantage of a scheduling mechanism
built into the operating system, or you can implement a user defined scheduling
system. In either case, this is a complex task.

The transmit function, at the beginning of the C/C++ model, has local storage to
keep frames and local data, and then it calls the function get_data_fromApp(). This
function gets the first piece of data to send from the transmitter to the receiver.

The next statement is a while loop that continuously sends data packets to the
receiver. In a real system, this while loop would have a termination condition based
on how many packets were sent. However, in this example the designer wants to
determine the data rate with varying noise on the channel, rather than sending real
packets from one place to another.

The statements in the while loop fill in the data fields of the packet, the sequence
number of the packet, and send the packet to the channel. The sequence number is
used to uniquely identify the data packet so the correct acknowledge packets can be
sent.

After the transmitter sends the packet to the channel, a timer is started. The timer
allows the receiver to receive the frame and send back an acknowledge before the

Starting with a Simple Example

14 SystemC 2.0 User’s Guide

the timer times out. If the transmitter does not receive an acknowledge after the
timer has timed out, then the transmitter determines that the data frame was not suc-
cessfully sent, and it will resend the packet.

When the transmitter sends a data packet and starts the timer, the transmitter waits
for events to occur. These events can be timeout events from the timer, or they can
be new_frame events from the channel. If the event received is a new_frame event,
the transmit function gets the frame from the channel and examines the sequence
number of the frame to determine if the acknowledge is for the frame just sent. If
the sequence number is correct, the frame has been successfully received. Then, the
transmitter gets the next piece of data to send and increments the sequence number
of the frame. The transmitter sends the data frame and waits again for events.

If the timeout event was received, the test for a new_frame event fails and the trans-
mitter resends the frame. This process continues until the frame is successfully sent.

The receiver function also has temporary storage to keep track of local data. At the
first invocation, it initializes the frame sequence number to 1, similar to the trans-
mitter function. This allows the two functions to get synchronized.

The receiver function has a main loop that waits only for new_frame events. After a
new_frame is received, the receiver gets the frame from the channel and analyzes
the contents.

If the sequence number of the frame matches the framenum variable, then the
expected frame was sent and received properly. The receiver increments the fra-
menum to get ready for the next frame.

The receiver generates an acknowledgement frame containing the sequence number
minus 1. Because the frame sequence number is already incremented, the acknowl-
edgement frame needs to subtract 1 from the framenum to acknowledge the last
frame received. If the wrong frame was received, the acknowledgement contains an
improper sequence number to inform the transmitter that the proper frame was not
correctly transmitted.

The last two functions in the C/C++ model send data to the channel and get data
from the channel. These two functions are very simple in this model, but they could
be complex, depending on the factors to be analyzed. Function
send_data_to_channel() simply copies the received frame from the transmitter to a
local variable. Function get_data_from_channel() reads the data from the local
variable, but adds noise to the data so some frames are not passed intact. Noise is

SystemC 2.0 User’s Guide 15

SystemC Model

generated by a random number generator that selectively zeroes the sequence num-
ber of the frame. The amount of noise is dependent on the total range of the
sequence numbers and the range of numbers that cause the sequence number to be
zeroed.

Using the C/C++ model, the designer can analyze the total data rate, effective data
rate, error recovery, error recovery time, and numerous other factors. The designer
can modify parameters such as frame rate size, error range size, data packet size,
timer length to verify that the protocol works, and analyze the effects of these
parameters.

SystemC Model

Using SystemC the designer can design at a high level of abstraction using C++
high level techniques, and refine the design down to a level that allows hardware or
software implementation. The block diagram for the SystemC implementation is
shown below:

This block diagram is slightly different than the C model because the SystemC
implementation is a more complete model. The SystemC description contains the
transmit block, the receiver block, the channel block, a timer block, and a display
block. The transmit, the receiver, and the channel blocks are the same as the C++
implementation. The display block emulates the application interface on the
receiver side and the timer block generates timeout events. Packets are generated
by a function in the transmit block and are sent through the channel to the receiver

Channel Receive DisplayTransmit

Timer

Acknowledge

Packets

Starting with a Simple Example

16 SystemC 2.0 User’s Guide

block. The receiver block sends data to the display block where the data is dis-
played.

Let’s examine each block to see the descriptions and how they work.

User Defined Packet Type

Before we describe the blocks, we need to look at the underlying packet data struc-
ture that passes data from module to module. The packet type is defined by a struct
as shown below:

// packet.h file

#ifndef PACKETINC
#define PACKETINC

#include "systemc.h"

struct packet_type {
 long info;
 int seq;

 int retry;

 inline bool operator == (const packet_type& rhs) const
 {
 return (rhs.info == info && rhs.seq == seq &&
 rhs.retry == retry);
 }
};

extern
void sc_trace(sc_trace_file *tf, const packet_type& v,
const sc_string& NAME);

#endif

// packet.cc file
#include "packet.h"

SystemC 2.0 User’s Guide 17

Transmit Module

 void sc_trace(sc_trace_file *tf, const packet_type& v,
 const sc_string& NAME) {

 sc_trace(tf,v.info, NAME + ".info");
 sc_trace(tf,v.seq, NAME + ".seq");
 sc_trace(tf,v.retry, NAME + ".retry");

 }

The struct has three fields, info, seq, and retry. Field info carries the data sent in the
packet. The goal of this simulation is to measure the protocol behavior with respect
to noise, not the data transfer characteristics. Therefore, the info field for data is of
type long. Future versions of this data packet type could use a struct type for the
data.

The second field is named seq and represents the sequence number assigned to this
packet. For better error handling, this number will uniquely identify the packet dur-
ing data transfers.

The third field in the packet is the retry field. This field contains the number of
times the packet has been sent.

Other constructs in the packet.h and packet.cc files will be discussed later.

Let’s now take a look at the first block, the transmit block.

Transmit Module

Notice that the transmit module includes the packet.h file which includes sys-
temc.h. The systemc.h file gives the design access to all of the SystemC class meth-
ods and members. The packet.h file gives the design access to the packet definition
and methods associated with the packet.

Note: In C++, function members are similar to C functions and data members are
similar to C variables.

The SystemC description of the transmit module, described in the sections that fol-
low, is shown below:

Starting with a Simple Example

18 SystemC 2.0 User’s Guide

// transmit.h

#include "packet.h"

SC_MODULE(transmit) {
 sc_in<packet_type> tpackin; // input port
 sc_in<bool> timeout; // input port
 sc_out<packet_type> tpackout; // output port
 sc_inout<bool> start_timer; // output port
 sc_in<bool> clock;

 int buffer;
 int framenum;
 packet_type packin, tpackold;
 packet_type s;
 int retry;
 bool start;

 void send_data();
 int get_data_fromApp();

 // Constructor
 SC_CTOR(transmit) {
 SC_METHOD(send_data); // Method Process
 sensitive << timeout;
 sensitive_pos << clock;
 framenum = 1;
 retry = 0;
 start = false;
 buffer = get_data_fromApp();
 }
};

// transmit.cc

#include "transmit.h"

 int transmit::get_data_fromApp() {
 int result;

SystemC 2.0 User’s Guide 19

Transmit Module

 result = rand();
 cout <<"Generate:Sending Data Value = "<<result
 << "\n";
 return result;
 }

 void transmit::send_data() {
 if (timeout) {
 s.info = buffer;
 s.seq = framenum;
 s.retry = retry;
 retry++;
 tpackout = s;
 start_timer = true;
 cout <<"Transmit:Sending packet no. "<<s.seq
 << "\n";

 } else {
 packin = tpackin;
 if (!(packin == tpackold)) {
 if (packin.seq == framenum) {
 buffer = get_data_fromApp();
 framenum++;
 retry = 0;
 }
 tpackold = tpackin;
 s.info = buffer;
 s.seq = framenum;
 s.retry = retry;
 retry++;
 tpackout = s;
 start_timer = true;
 cout <<"Transmit:Sending packet no. "<<s.seq
 << "\n";
 }
 }
 }

Module

Starting with a Simple Example

20 SystemC 2.0 User’s Guide

A module is the basic container object for SystemC. Modules include ports, con-
structors, data members, and function members. A module starts with the macro
SC_MODULE and ends with a closing brace. A large design will typically be
divided into a number of modules that represent logical areas of functionality of the
design.

Ports

Module transmit has three input, one output, and one inout ports as shown below:

 sc_in<packet_type> tpackin; // input port
 sc_in<bool> timeout; // input port
 sc_out<packet_type> tpackout; // output port
 sc_inout<bool> start_timer; // inout port
 sc_in<bool> clock; // input port

Port tpackin is used to receive acknowledgement packets from the channel. Port
timeout is used to receive the timeout signal from the timer module and lets the
transmit module know that the acknowledge packet was not received before the
timer times out. The clock port is used to synchronize the different modules
together so that events happen in the correct order.

Output port tpackout is the port that module transmit uses to send packets to the
channel. Inout port start_timer is used by the transmit module to start the timer after
a packet has been sent to the channel.

Data and Function Members

After the port statements, local data members used within the module are declared.

The function members send_data() and get_data_fromApp() are declared in the
transmit.h file and implemented in the transmit.cc file. This is the standard way to
describe functionality in C++ and SystemC.

Constructor

The module constructor identifies process send_data() as an SC_METHOD pro-
cess, which is sensitive to clock and timeout. The constructor also initializes the
variables used in the module. This is an important step. In HDL languages such as
VHDL and Verilog, all processes are executed once at the beginning of simulation
to initialize variable and signal values. In SystemC the constructor of a module is

SystemC 2.0 User’s Guide 21

Transmit Module

called at initialization, and all initialization that needs to be performed is defined in
the constructor.

The constructor initializes variable framenum to 1, which is used as the sequence
number in all packets. Variable retry is initialized to 0, and variable start is initial-
ized to false. Then the buffer, used to hold data is initialized by getting the first
piece of data.

Implementation of Methods

Let’s now take a look at the transmit.cc file. This file implements the two methods
declared in the header file. One method is a process, i.e. it executes concurrently
with all other processes, the other is not.

Method get_data_fromApp() is a local method that generates a new piece of data to
send across the channel. In the implementation you can see that this method calls
the random number generator rand() to generate a new data value to send. Because
we are validating the effects of noise on the protocol, the data values sent are not
important at this stage of the design.

The method send_data() is a process because it is declared as such in the construc-
tor for module transmit.The process checks first to see if timeout is true. Timeout
will be true when the timer has completed.

Next the process checks to see if the current value of port tpackin is equivalent to
the old value. This check is used to see if an acknowledgement packet was received
from the channel.

If the values differ an acknowledgement packet has been received from the channel.
Notice that tpackin was copied to local variable packin. Using a local variable
allows you to access to the packet fields that cannot be accessed directly from the
port.

The sequence number of the packet is checked against the last sent packet to see if
they match. If they match, a correct acknowledgement was received and the next
piece of data can be sent. The buffer will be filled with the next piece of data and
the framenum is incremented. Field retry is also reset to 0, which is the initial value.

If no acknowledgement packet was received, the process was triggered by an event
from the timeout port. This means the timer block completed its count or "timed

Starting with a Simple Example

22 SystemC 2.0 User’s Guide

out". If a timeout event occurs, that means the packet was sent, but no acknowledge
was received. In this case, the packet must be transmitted again.

A local packet named s has all of its fields filled with the new data values to be sent,
and it is assigned to tpackout. Notice that retry is incremented each time the packet
is sent. This number is required to ensure the uniqueness of each packet.

Whenever a packet is written, the timer is started by the transmit process by setting
the start_timer signal to true.

In summary, the transmit module sends a new packet to the channel. The timer is
started to keep track of how long ago the packet was sent to the channel. If the
acknowledge packet does not return before the timer times out, then the packet or
acknowledge were lost and the packet needs to be transmitted again.

Channel Module

The channel module accepts packets from the transmitter and passes them to the
receiver. The channel also accepts acknowledge packets from the receiver to send
back to the transmit module. The channel adds some noise to the transmission of
packets to model the behavior of the transmission medium. This causes the packets
to fail to be properly received at the receiver module, and acknowledge packets fail
to get back to the transmit module. The amount of noise added is dependent on the
type of transfer medium being modeled.

The SystemC channel description is shown below:

// channel.h

#include "packet.h"

SC_MODULE(channel) {
 sc_in<packet_type> tpackin; // input port
 sc_in<packet_type> rpackin; // input port
 sc_out<packet_type> tpackout; // output port
 sc_out<packet_type> rpackout; // output port

 packet_type packin;

SystemC 2.0 User’s Guide 23

Channel Module

 packet_type packout;

 packet_type ackin;
 packet_type ackout;

 void receive_data();
 void send_ack();

 // Constructor
 SC_CTOR(channel) {
 SC_METHOD(receive_data); // Method Process
 sensitive << tpackin;

 SC_METHOD(send_ack); // Method Process
 sensitive << rpackin;
 }
};

// channel.cc

#include "channel.h"

 void channel::receive_data() {
 int i;
 packin = tpackin;
 cout << "Channel:Received packet seq no.
 = " << packin.seq << "\n";
 i = rand();
 packout = packin;
 cout <<"Channel: Random number = "<<i<<endl;

 if ((i > 1000) && (i < 5000)) {
 packout.seq = 0;
 }
 rpackout = packout;
 }

 void channel::send_ack(){
 int i;
 ackin = rpackin;
 cout <<"Channel:Received Ack for packet

Starting with a Simple Example

24 SystemC 2.0 User’s Guide

 = " << ackin.seq << "\n";
 i = rand();
 ackout = ackin;

 if ((i > 10) && (i < 500)) {
 ackout.seq = 0;
 }
 tpackout = ackout;
 }

Ports

The channel description contains four ports, two input ports and two output ports.
Port tpackin accepts packets from the transmit module and port rpackin accepts
acknowledge packets from the receiver. Port tpackout sends acknowledge packets
to the transmit module and port rpackout sends data packets to the receiver.

Data and Function Members

Notice the four local packet variable declarations to hold the values of the packet
ports. Local variables are necessary so you can access the packet internal data
fields.

The channel description has two processes. Process receive_data() is used to get
data from the transmit module and pass the data to the receiver module. Process
send_ack() gets acknowledge packets from the receiver module and sends them to
the transmit module.

Process receive_data is sensitive to events on port tpackin. Thus when a new packet
is sent from the transmit module, process receive_data() is invoked and analyzes
the packet. Process send_ack() is sensitive to events on port rpackin. When the
receiver module sends an acknowledge packet to the channel module, the value of
port rpackin is updated and causes process send_ack to be invoked.

Constructor

In the channel constructor, we can see that both processes are SC_METHOD pro-
cesses.

SystemC 2.0 User’s Guide 25

Receiver Module

Implementation of Methods

Let’s take a closer look at process receive_data. The first step is to copy tpackin to a
local variable so that the packet fields can be accessed. A message is printed for
debugging purposes. A random number is generated to add noise to the channel.
The packet is assigned to the output packet and another debugging message is
printed displaying the random number value. Finally, an if statement determines
whether the packet passes through as received, or if the packet is altered by adding
noise.

If the random number is within the specified range, the sequence number of the
packet is set to 0. This means the packet was corrupted. The last two statements of
the process receive_data copies the altered or unaltered packet to output port rpack-
out

You can modify the range of random numbers generated and the range of numbers
that modify the packet sequence number to control the amount of noise injected.

The send_ack process, triggered by events on port rpackin, is very similar to the
receive_data process. It assigns rpackin to the local packet ackin so the fields of the
packet can be examined. Next, a debug message is written, and a random number
representing the noise in the channel for acknowledgements is generated. This pro-
cess also uses a specified range to modify the sequence number field of the packet.
Finally, the packet is assigned to tpackout where it will be passed to the transmit
module.

Receiver Module

The receiver module accepts packets from the channel module and passes the data
received to the virtual application. In this design the virtual application is a display,
modeled in the display module. When the receiver module successfully receives a
packet, it send an acknowledgement packet back to the transmit module. Incoming
packet sequence numbers are compared with an internal counter to ensure the cor-
rect packets are being transmitted.

The receiver module is shown below:

// receiver.h

Starting with a Simple Example

26 SystemC 2.0 User’s Guide

#include "packet.h"

SC_MODULE(receiver) {
 sc_in<packet_type> rpackin; // input port
 sc_out<packet_type> rpackout; // output port
 sc_out<long> dout; // output port
 sc_in<bool> rclk;

 int framenum;
 packet_type packin, packold;
 packet_type s;
 int retry;

 void receive_data();

 // Constructor
 SC_CTOR(receiver) {
 SC_METHOD(receive_data); // Method Process
 sensitive_pos << rclk;
 framenum = 1;
 retry = 1;
 }
};

// receiver.cc

#include "receiver.h"

 void receiver::receive_data(){
 packin = rpackin;
 if (packin == packold) return;
 cout <<"Receiver: got packet no. = "<<packin.seq
 << "\n";
 if (packin.seq == framenum) {
 dout = packin.info;
 framenum++;
 retry++;
 s.retry = retry;
 s.seq = framenum -1;

SystemC 2.0 User’s Guide 27

Receiver Module

 rpackout = s;
 }
 packold = packin;
 }

Ports

The receiver module has four ports, two input port, and two output ports. Input port
rpackin accepts packets from the channel. Input rclk is the receiver block clock sig-
nal. Output port rpackout is used to send acknowledge packets to the channel where
they may be passed to the transmit module. Output port dout transfers the data
value contained in the packet to the display module for printing.

Constructor

The receiver module contains one SC_METHOD process named receive_data,
which is sensitive to positive edge transitions on input port rclk. Notice in the
receiver module constructor that variable framenum is initialized to 1. Module
transmit also initializes a framenum variable to 1, so both transmit and receiver are
synchronized at the start of packet transfer.

Implementation of Methods

As we have already seen, process receive_data is invoked when a new packet
arrives on the rpackin port. The first step in the process is to copy rpackin to the
local variable packin for packet field access. The receiver block, like the transmit
block, compares the new packet value with the old packet value to determine if a
new packet has been received. A debug message is printed and the process checks
to see if the sequence number of the incoming packet matches the expected fra-
menum. If so, the packet data is placed on the dout port where it will be sent to the
display module. Next, the framenum variable is incremented to reflect the next fra-
menum expected.

If a packet is successfully received an acknowledge packet needs to be sent back to
the transmit module. A local packet named s has its sequence number filled in with
framenum. After the sequence number field is updated, packet s is assigned to port
rpackout.

Starting with a Simple Example

28 SystemC 2.0 User’s Guide

Display Module

The display module is used to format and display the packet data received by the
receiver module. In this example the data is a very simple type long value. This
makes the display module very simple. However, as the simplex protocol is more
completely implemented, the data being sent could grow in complexity to the point
that more complex display formatting is needed. The display module is shown
below:

// display.h

#include "systemc.h"
#include "packet.h"

SC_MODULE(display) {
 sc_in<long> din; // input port

 void print_data();

 // Constructor
 SC_CTOR(display) {
 SC_METHOD(print_data); // Method process to print
data
 sensitive << din;
 }
};

// display.cc

#include "display.h"

void display::print_data() {
 cout <<"Display:Data Value Received, Data = "
 <<din << "\n";
}

SystemC 2.0 User’s Guide 29

Timer Module

This module only has one input port named din. It accepts data values from the
receiver module. When a new value is received, process print_data is invoked and
writes the new data item to the output stream.

Timer Module

The timer module implements a timer for packet retransmission. The delay allows a
packet to propagate to the receiver and the acknowledge to propagate back before a
retransmit occurs. Setting the delay properly is a key factor in determining the max-
imum data rate in a noisy environment. Without the timer, the transmitter would not
know when to retransmit a packet that was lost in transmission. The delay value is a
parameter that can easily be modified to find the optimum value.

The timer module is shown below:

// timer.h

#include "systemc.h"

SC_MODULE(timer) {
 sc_inout<bool> start; // input port
 sc_out<bool> timeout; // output port
 sc_in<bool> clock; // input port

 int count;

 void runtimer();

 // Constructor
 SC_CTOR(timer) {
 SC_THREAD(runtimer); // Thread process
 sensitive_pos << clock;
 sensitive << start;
 count = 0;
 }
};

Starting with a Simple Example

30 SystemC 2.0 User’s Guide

// timer.cc

#include "timer.h"

 void timer::runtimer() {
 while (true) {
 if (start) {

 cout <<"Timer: timer start detected"<<endl;
 count = 5; // need to make this a constant
 timeout = false;
 start = false;
 } else {
 if (count > 0) {
 count--;
 timeout = false;
 } else {
 timeout = true;
 }
 }
 wait();
 }
 }

Ports

The timer module has one input port, one inout port, and one output port. Port start
is an inout port of type bool. The transmit module activates the timer by setting start
to true. The timer module starts the count and resets the start signal to false. Port
clock is an input port of type bool that is used to provide a time reference signal to
the timer module. Output port timeout connects to the transmit module and alerts
the transmit module when the timer expires. This means that either the packet or
acknowledge were lost during transmission and the packet needs to be transmitted
again.

Constructor

The timer module contains one process called runtimer. This process is sensitive to
the positive edge of port clock.

SystemC 2.0 User’s Guide 31

Putting it all together - The main routine

Implementation of Methods

If the value of the start signal is 1 the timer is started. When the timer is started, a
debug message is written out, the value of variable count is set to the timer delay
value, and output port timeout is set to false. The false value signifies that the timer
is running and has not timed out yet. The timer process then resets the start signal to
0.

If variable count is greater than 0, the timer is still counting down. Variable count is
decremented and port timeout stays false. If variable count is equal to 0, the timer
has expired and timeout is set to true. At this point the transmit module knows that
the packet was lost and retransmits the packet.

Putting it all together - The main routine

The sc_main routine is the top-level routine that ties all the modules together and
provides the clock generation and tracing capabilities. The sc_main routine is
shown below:

// main.cc

#include "packet.h"
#include "timer.h"
#include "transmit.h"
#include "channel.h"
#include "receiver.h"
#include "display.h"

int sc_main(int argc, char* argv[]) {

 sc_signal<packet_type> PACKET1, PACKET2, PACKET3,
PACKET4;
 sc_signal<long> DOUT;
 sc_signal<bool> TIMEOUT, START;

 sc_clock CLOCK("clock", 20); // transmit clock

Starting with a Simple Example

32 SystemC 2.0 User’s Guide

 sc_clock RCLK("rclk", 15); // receive clock

 transmit t1("transmit");
 t1.tpackin(PACKET2);
 t1.timeout(TIMEOUT);
 t1.tpackout(PACKET1);
 t1.start_timer(START);
 t1.clock(CLOCK);

 channel c1("channel");
 c1.tpackin(PACKET1);
 c1.rpackin(PACKET3);
 c1.tpackout(PACKET2);
 c1.rpackout(PACKET4);

 receiver r1("receiver");
 r1.rpackin(PACKET4);
 r1.rpackout(PACKET3);
 r1.dout(DOUT);
 r1.rclk(RCLK);

 display d1("display");
 d1 <<DOUT;

 timer tm1("timer");
 tm1 <<START<<TIMEOUT<<CLOCK.signal();

 // tracing:
 // trace file creation
 sc_trace_file *tf = sc_create_vcd_trace_file
 ("simplex");
 // External Signals
 sc_trace(tf, CLOCK.signal(), "clock");
 sc_trace(tf, TIMEOUT, "timeout");
 sc_trace(tf, START, "start");
 sc_trace(tf, PACKET1, "packet1");
 sc_trace(tf, PACKET2, "packet2");
 sc_trace(tf, PACKET3, "packet3");
 sc_trace(tf, PACKET4, "packet4");
 sc_trace(tf, DOUT, "dout");

SystemC 2.0 User’s Guide 33

Putting it all together - The main routine

 sc_start(10000);

 sc_close_vcd_trace_file(tf);

 return(0);
}

Include Files

Notice that the sc_main file includes all of the other modules in the design. You
instantiate each of the lower level modules and connect their ports with signals to
create the design in sc_main. To instantiate a lower level module, the interface of
the module must be visible. Including the .h file from the instantiated module pro-
vides the necessary visibility.

Argument to sc_main

The sc_main routine takes the following arguments:

int sc_main(int argc, char* argv[]) {

The argc argument is a count of the number of command line arguments and the
argv is an array containing the arguments as char* strings. This is the standard C++
way of parsing command line arguments to programs.

Signals

After the sc_main statement, the local signals are declared to connect the module
ports together. Four signals are needed for packet_type to cross connect the trans-
mit, receiver, and channel modules. There are two clock declarations, clock and
rclk. Clock is used as the transmitter clock and will synchronize the transmit block
and the timer block. Rclk is used as the receiver clock and will synchronize the
receiver block and the display block.

Module Instantiation

After the declaration statements, the modules in the design are instantiated. The
transmit, channel, receiver, display, and timer are instantiated and connected

Starting with a Simple Example

34 SystemC 2.0 User’s Guide

together with the locally declared signals. This completes the implementation of the
design.

Positional and Named Connections

In the sc_main file two different types of connections were used to connect signals
to the module instantiations. Modules transmit, channel, and receiver used named
connections. A named connection connects a port name to a signal name. Notice
that the port names were in lowercase and the signal names in uppercase.

Modules display and timer used positional connections to connect signals to the
module instantiations. With this style of connection a list of signals is passed to the
instantiation and the first signal in the list connects to the first port, the second sig-
nal to the second port, etc.

Using Trace

The program can now be built and run. To make is easier to determine if the design
works as intended, you can create a trace file with the built-in signal tracing meth-
ods in SystemC. The first trace command, shown below, creates a trace file named
simplex.vcd into which the results of simulation can be written:

 sc_trace_file *tf = sc_create_vcd_trace_file
 ("simplex");

Next, a set of sc_trace commands trace the signals and variables of a module, as
follows:

 sc_trace(tf, CLOCK.signal(), "clock");
 sc_trace(tf, TIMEOUT, "timeout");

These commands write the value of the signal specified to the trace file previously
created. The last argument specifies the name of the signal in the trace file.

After simulation is executed, you can examine the results stored in the trace file
with a number of visualization tools that generate waveforms and tables of results.

Simulation Start

After the trace commands, the following function call instructs the simulation ker-
nel to run for 10,000 default time units and stop:

SystemC 2.0 User’s Guide 35

Compiling the Example for UNIX

 sc_start(10000);

Alternatively, you can use an sc_start value of -1, as shown below:

sc_start(-1);

This command tells the simulation to run forever.

After the example is completely described in SystemC, the commands to build the
simulator need to be specified. The following sections provide procedures for com-
piling under UNIX and Windows.

Compiling the Example for UNIX

The following steps are needed to compile the design for the UNIX environment:

1. Create a new directory for the design and create all the design files in it.

2. Copy file Makefile and Makefile.defs from the SystemC installation examples
directory into the new directory.

3. Edit the Makefile so that the list of files includes all of the design source files.
An example Makefile is shown below:

TARGET_ARCH = gccsparcOS5

MODULE = demo
SRCS = channel.cc display.cc packet.cc receiver.cc
timer.cc transmit.cc main.cc
OBJS = $(SRCS:.cc=.o)

include ./Makefile.defs

Edit the SRCS line to list all of the source files in the design.

Don’t remove the line "include ./Makefile.defs".

The MODULE line specifies the name of the executable to run when the compi-
lation is done. In this example, the compilation creates a program named demo.

4. Open the Makefile.defs and make sure that the SYSTEMC line points to the
current location of the SystemC class libraries.

An example is shown below:

Starting with a Simple Example

36 SystemC 2.0 User’s Guide

TARGET_ARCH = gccsparcOS5
CC = g++
OPT =
DEBUG = -g
SYSTEMC = /remote/dtg403/dperry/systemc-2.0
INCDIR = -I. -I.. -I$(SYSTEMC)/include
LIBDIR = -L. -L.. -L$(SYSTEMC)/lib-$(TARGET_ARCH)
CFLAGS = -Wall $(DEBUG) $(OPT) $(INCDIR) $(LIBDIR)
LIBS = -lsystemc -lm $(EXTRA_LIBS)

// rest of file not shown

5. By default the simulation is built with debugging turned on. Modify the
DEBUG line to turn on or off the debugging options as desired.

6. To compile the design, enter the following in the command line:
unix% gmake

or
 unix% make

Compiling the Example for Windows

The SystemC distribution includes project and workspace files for Visual C++. If
you use these project and workspace files the SystemC source files are available to
your new project. For Visual C++ 6.0 the project and workspace files are located in
directory:

 ...\systemc-2.0\msvc60

This directory contains two subdirectories: systemc and examples.

The systemc directory contains the project and workspace files to compile the sys-
temc.lib library. Double-click on the systemc.dsw file to launch Visual C++ with
the workspace file. The workspace file will have the proper switches set to compile
for Visual C++ 6.0. Select "Build systemc.lib" under the Build menu or press F7 to
build systemc.lib.

The examples directory contains the project and workspace files to compile the
SystemC examples. Go to one of the examples subdirectories and double-click on

SystemC 2.0 User’s Guide 37

Executing the Example

the .dsw file to launch Visual C++ with the workspace file. The workspace file will
have the proper switches set to compile for Visual C++ 6.0. Select "Build <exam-
ple>.exe" under the Build menu or press F7 to build the example executable.

To create a new design, first create a new project by using the "New" menu item
under the File menu. Select the Projects tab on the dialog box that appears and
select Win32 Console Application. Create an empty project.

For your own SystemC applications, make sure that the Run Time Type Informa-
tion switch is on by using the "Settings..." menu item under the Project menu.
Select the C/C++ tab, and select the C++ Language category. Make sure that the
Enable Run Time Type Information (RTTI) checkbox is checked.

Also make sure that the SystemC header files are included by selecting the C/C++
tab, selecting the Preprocessor category, and typing the path to the SystemC src
directory in the text entry field labeled "Additional include directories". The exam-
ples use e.g. "../../../src".

Next add the source files to the project by using the "Add To Project>Files..." menu
item under the Project menu. Make sure that the files are added to the new project
directory just created. Do the same for the systemc.lib library before building your
SystemC application.

Now use the Compile and Build menu selections to compile and build the SystemC
application. When the application has been built, the design can be run from Visual
C++ to debug the application.

Executing the Example

After the simulation executable is built, you run the simulation by executing the
simulation executable created in the compilation step. The simulation executable is
a batch program that executes the simulation. For example, to run a simulation for a
module named demo, simply type demo at the command prompt and press return. If
you built a console application in Visual C++ you can run the application in a Win-
dows Command Prompt window by typing the name of the project created.

The duration of the simulation is specified by method sc_start in the sc_main mod-
ule. The data created by the simulation is specified with the sc_trace commands in
the sc_main module.

Starting with a Simple Example

38 SystemC 2.0 User’s Guide

When the simulation is complete, a trace file of the traced signals is created. You
can use tools to view waveforms and tables from this data and analyze the results of
simulation and determine whether or not the simulation succeeded.

SystemC 2.0 User’s Guide 39

CHAPTER 3 Modules and Hierarchy

Modules are the basic building block within SystemC to partition a design. Mod-
ules allow designers to break complex systems into smaller more manageable
pieces. Modules help split complex designs among a number of different designers
in a design group. Modules allow designers to hide internal data representation and
algorithms from other modules. This forces designers to use public interfaces to
other modules, and the entire system becomes easier to change and easier to main-
tain. For example, a designer can decide to completely change the internal data rep-
resentation and implementation of a particular module. However, if the external
interface and internal function remain the same, the users of the module do not
know that the internals were changed. This allows designers to optimize the design
locally.

Modules are declared with the SystemC keyword SC_MODULE as shown by the
example below:

SC_MODULE(transmit) {

The identifier after the SC_MODULE keyword is the name of the module, which is
transmit in this example. This syntax uses a macro named SC_MODULE to declare
a new module named transmit. Another way to declare a module is the following:

Modules and Hierarchy

40 SystemC 2.0 User’s Guide

struct transmit : sc_module {

This form of declaration resembles a typical C++ declaration of a struct or a class.
The macro SC_MODULE provides an easy and very readable way to describe the
module.

A module can contain a number of other elements such as ports, local signals, local
data, other modules, processes, and constructors. These elements implement the
required functionality of the module.

Module Ports

Module Ports pass data to and from the processes of a module. You declare a port
mode as in, out, or inout. You also declare the data type of the port as any C++ data
type, SystemC data type, or user defined type.

The figure above shows a fifo module with a number of ports. The ports on the left
are input ports or inout ports while the ports on the right are output ports. Each port
has an identifying name. Graphic symbols like the one shown above typically do
not contain port types, so it is not clear from the symbol which port types are
present. The SystemC description of these ports is shown below:

SC_MODULE(fifo) {
 sc_in<bool> load;

Load

Read

Data

Full

Empty

Fifo

SystemC 2.0 User’s Guide 41

Module Signals

 sc_in<bool> read;
 sc_inout<int> data;
 sc_out<bool> full;
 sc_out<bool> empty;

 //rest of module not shown
}

Each port on the block diagram has a matching port statement in the SystemC
description. Port modes sc_in, sc_out, and sc_inout are predefined by the SystemC
class library.

Module Signals

Signals can be local to a module, and are used to connect ports of lower level mod-
ules together. These signals represent the physical wires that interconnect devices
on the physical implementation of the design. Signals carry data, while ports deter-
mine the direction of data from one module to another. Signals aren’t declared with
a mode such as in, out, or inout. The direction of the data transfer is dependent on
the port modes of the connecting components.

FIGURE 1. Filter Design

Sample

Coeff

Mult

c

s

q

din dout

out

a

b

q

s1

c1

m1

Modules and Hierarchy

42 SystemC 2.0 User’s Guide

The example in Figure 1 shows the data path of a simple filter design. There are
three lower level modules instantiated in the filter design, sample, coeff, and mult
modules. The module ports are connected by three local signals q, s, and c.

Note: Instantiation means that an instance of an object is created. It is the same as
declaring a new object in C++.

Positional Connection

There are two ways to connect signals to ports in SystemC.

• named mapping

• positional mapping

First let’s examine the example in Figure 1 using positional mapping.

The SystemC description for this example looks as follows:

// filter.h
#include "systemc.h"
#include "mult.h"
#include "coeff.h"
#include "sample.h"

SC_MODULE(filter) {

 sample *s1;
 coeff *c1;
 mult *m1;
 sc_signal<sc_uint<32> > q, s, c;

 SC_CTOR(filter) {
 s1 = new sample ("s1");
 (*s1)(q,s);

 c1 = new coeff ("c1");
 (*c1)(c);

 m1 = new mult ("m1");
 (*m1)(s,c,q);
 }
}

SystemC 2.0 User’s Guide 43

Module Signals

The four include files at the beginning of the module give the designer access to the
SystemC classes and the declarations of the instantiated modules. The top level of
the design and the module are both named filter. The top level module does not
have any ports, which is legal for the top of the design.

Below the include statements are pointer declarations that allow allocation of the
objects to be instantiated in the design. You declare a pointer variable for each
object that will be instantiated later.

Next, the local signal are declared using the SystemC template class sc_signal. The
type of the signal being passed is entered between the angle brackets (<>). In this
example the type of the signal is a SystemC data type sc_uint. Notice that there is
an extra space inserted between the "32>" and the ">" in the declaration. This is
required to allow the description to compile. The three modules in this design are
instantiated in the constructor SC_CTOR.

Each instantiation contains two line of SystemC description. The first line creates a
new object and a pointer to the object. The second line uses the object pointer to
map signals to the object ports. This style of mapping is called positional mapping.
Each signal in the mapping matches the port of the instantiated module on a posi-
tional basis. The first signal listed in the mapping connects to the first port in the
instantiation, the second signal connects to the second port, etc. The order and num-
ber of ports in this style of mapping is very important. If the order is not followed
properly signals of one type can get connected to ports of another type. This will
produce a runtime error.

Positional connections can work very well for small instantiations with few ports to
make the description small. However, for instantiations with a large number of
ports, connecting with positional connection can be confusing. For these cases, it is
better to use named connection.

Named Connection

The same design with named mapping is shown below:

#include "systemc.h"
#include "mult.h"
#include "coeff.h"

Modules and Hierarchy

44 SystemC 2.0 User’s Guide

#include "sample.h"

SC_MODULE(filter) {
 sample *s1;
 coeff *c1;
 mult *m1;

 sc_signal<sc_uint<32> > q, s, c;

 SC_CTOR(filter) {
 s1 = new sample ("s1");
 s1->din(q);
 s1->dout(s);

 c1 = new coeff ("c1");
 c1->out(c);

 m1 = new mult ("m1");
 m1->a(s);
 m1->b(c);
 m1->q(q);
 }
}

This example uses named connection for the component instantiations. The first
named connection connects port din of module s1(sample) to signal q of module fil-
ter. The second named connection connects port dout of module s1 to signal s of
module filter. Using named connection the designer can create the signal to port
connections in any order.

Internal Data Storage

For storage of data within a module, the designer can declare local variables. Inter-
nal data storage can be of any legal C++ type, SystemC type, or user defined type.
Local storage is not visible outside the module unless the designer specifically
makes the data visible.

// count.h

SystemC 2.0 User’s Guide 45

Internal Data Storage

#include "systemc.h"

SC_MODULE(count) {
 sc_in<bool> load;
 sc_in<int> din; // input port
 sc_in<bool> clock; // input port
 sc_out<int> dout; // output port

 int count_val; // internal data storage

 void count_up();

 SC_CTOR(count) {
 SC_METHOD(count_up); // Method process
 sensitive_pos << clock;
 }
};

// count.cc

#include "count.h"

void count::count_up() {
 if (load) {
 count_val = din;
 } else {
 count_val = count_val + 1; // could also
 //write count_val++
 }
 dout = count_val;
}

The example above implements an integer counter. On a rising edge of port clock,
the process count_up executes. If the load input is true, port din is loaded into the
counter. Otherwise, the counter increments its value by 1. The count_val variable is
used to store the intermediate value of the counter. It is local storage, not visible
outside the counter module.

Modules and Hierarchy

46 SystemC 2.0 User’s Guide

Processes

So far the interface and storage of modules have been discussed, but not the part of
the module that provides the functionality. The real work of the modules are per-
formed in processes. Processes are functions that are identified to the SystemC ker-
nel and called whenever signals these processes are “sensitive to” change value. A
process contains a number of statements that implement the functionality of the
process. These statements are executed sequentially until the end of the process
occurs, or the process is suspended by one of the wait function calls.

 Processes look very much like normal C++ methods and functions with slight
exceptions. Processes are methods that are registered with the SystemC kernel.
There are a number of different types of processes including method processes,
thread processes, and clocked thread processes. Process types are discussed in
Chapter 4, “Processes,”. The process type determines how the process is called and
executed. Processes can contain calls to a function named wait() that will halt exe-
cution of the process at different points. Signal value changes cause the process to
receive events and execute statements in a process. An example process is shown
below:

// dff.h

#include "systemc.h"

SC_MODULE(dff) {
 sc_in<bool> din;
 sc_in<bool> clock;
 sc_out<bool> dout;

 void doit();

 SC_CTOR(dff) {
 SC_METHOD(doit);
 sensitive_pos << clock;
 }
};

// dff.cc

#include "dff.h"

SystemC 2.0 User’s Guide 47

Module Constructors

void dff::doit() {
 dout = din;
}

This module describes a flip flop device. The module has a clock input (clock), a
data input (din), and a data output (dout). When a rising edge (0 to 1 value) occurs
on the clock input object, input port data is assigned to output port dout. The value
change on input clock triggers method doit to execute. Let’s take a closer look at
how this occurs in SystemC.

Process doit() is described as a method in the module. This method will be called
whenever a positive edge occurs on port clock.

This behavior is described by the following statements in the constructor for mod-
ule dff:

SC_METHOD(doit);
sensitive_pos << clock;

The first statement specifies that module dff contains a process named doit. It also
specifies that this process is an SC_METHOD process. An SC_METHOD process
is triggered by events and executes all of the statements in the method before
returning control to the SystemC kernel (more about processes later). The second
statement specifies that the process is sensitive to positive edge changes on input
port clock.

The process runs once when the first event (positive edge on clock) is received. It
executes the assignment of din to dout and then returns control to the SystemC ker-
nel. Another event causes the process to be invoked again, and the assignment
statement is executed again.

Module Constructors

The final item that makes up a module is the constructor. The module constructor
creates and initializes an instance of a module. The constructor creates the internal
data structures that are used for the module and initializes these data structures to
known values. The module constructors in SystemC are implemented such that the

Modules and Hierarchy

48 SystemC 2.0 User’s Guide

instance name of the module is passed to the constructor at instantiation (creation)
time. This helps identify the module when errors occur or when reporting informa-
tion from the module. Example constructors have already been looked at briefly,
but let’s take a more detailed look at slightly more complex constructors. Below is
an example RAM:

// ram.h

#include "systemc.h"

SC_MODULE(ram) {
 sc_in<int> addr;
 sc_in<int> datain;
 sc_in<bool> rwb;
 sc_out<int> dout;

 int memdata[64]; // local memory storage
 int i;

 void ramread();
 void ramwrite();

 SC_CTOR(ram){
 SC_METHOD(ramread);
 sensitive << addr << rwb;

 SC_METHOD(ramwrite)
 sensitive << addr << datain << rwb;

 for (i=0; i++; i<64) {
 memdata[i] = 0;
 }
 }
};

// rest of module not shown

This example implements a RAM memory device. The RAM can be written to and
read from the two processes, read() and write(). The constructor contains declara-

SystemC 2.0 User’s Guide 49

TestBenches

tions for each of the processes. Both are described as SC_METHOD type pro-

cesses1. The for loop is used to initialize the memory to 0 values.

 When a RAM module is instantiated the constructor will be called, data allocated
for the module, and the two processes registered with the SystemC kernel. Finally
the for loop will be executed which will initialize all the memory locations of the
newly created ram module.

TestBenches

Testbenches are used to provide stimulus to a design under test and check design
results. The testbench can be implemented in a number of ways. The stimulus can
be generated by one process and results checked by another. The stimulus can be
embedded in the main program and results checked in another process. The check-
ing can be embedded in the main program, etc. There is no clear "right" way to do a
testbench, it is dependent on the user application.

A typical testbench might look as follows:

The stimulus module will provide stimulus to the Device Under Test (DUT) and the
Results Checking module will look at the device output and verify the results are
correct.

1. Described in Chapter 4, “Processes,”

Device
Under
TestStimulus

Results
Checking

Main Module

Modules and Hierarchy

50 SystemC 2.0 User’s Guide

The stimulus module can be implemented by reading stimulus from a file, or as an
SC_THREAD process, or an SC_CTHREAD process. The same is true of the
results checking module. Some designers combine the stimulus and results check-
ing modules into one module. Also the results checking module can be left out if
the designer does manual analysis of the output results. For some designs this tech-
nique works well because the output results are easy to check. For example if the
device under test is a graphics manipulation device and the stimulus is a picture to
be manipulated, the designer just needs to look at the output picture to verify that
the results are as expected.

An example testbench for the counter example described on page 44 is shown
below:

// count_stim.h

#include "systemc.h"

SC_MODULE(count_stim) {
 sc_out<bool> load;
 sc_out<int> din; // input port
 sc_in<bool> clock; // input port
 sc_in<int> dout;

 void stimgen();

 SC_CTOR(count_stim) {
 SC_THREAD(stimgen);
 sensitive_pos (clock);
 }
};

// count_stim.cc

#include "count_stim.h"

void count_stim::stimgen() {
 while (true) {
 load = true; // load 0
 din = 0;

 wait(); // count up, value = 1

SystemC 2.0 User’s Guide 51

TestBenches

 load = false;

 wait(); // count up, value = 2
 wait(); // count up, value = 3
 wait(); // count up, value = 4
 wait(); // count up, value = 5
 wait(); // count up, value = 6
 wait(); // count up, value = 7
 }
}

The testbench will drive the load and din inputs of the count module. The clock
input of the count module and the clock input of the count_stim module will be
generated from a clock object located in the sc_main routine discussed in the next
section.

The first two statements in the while loop of the process will load the value 0 into
the count module. The count module is loaded when the load input is true. The
value loaded into the count module is the value of din. When the load signal goes to
false and a positive edge occurs on input clock, the counter will count up. After the
first wait() call, the load input will be set to false allowing the counter to count up.
Successive clocks will allow the counter to keep counting up until the end of the
while loop is reached. At this point, execution will start at the beginning of the
while loop and the counter will be loaded with 0.

Since the count module is a simple design, the stimulus for it is trivial. More com-
plex designs will have more complex stimulus. This style of test bench will support
more complex stimulus. As mentioned earlier stimulus can also be read from a file.
This has the added benefit of changing the stimulus without recompiling the design.

A separate module could be used to check that the counter values were correct, or
each of the wait statements could have a result checking statement like the follow-
ing:

 wait(); // count up, value = 2
 if (dout != 2) {
 printf("counter failed at value 2");
 }

Modules and Hierarchy

52 SystemC 2.0 User’s Guide

SystemC 2.0 User’s Guide 53

CHAPTER 4 Processes

Processes are the basic unit of execution within SystemC. Processes are called to
emulate the behavior of the target device or system. Three types of SystemC pro-
cesses are available:

• Methods

• Threads

• Clocked Threads

Each of these processes has unique behavior and are discussed in the next few sec-
tions.

In a typical programming language, methods are executed sequentially as control is
transferred from one method to another to perform the desired function. Typical
programming languages can be used to model sequential behavior of systems very
easily. However electronic systems are inherently parallel with lots of parallel
activity constantly taking place. Modeling these parallel activities with a sequential
language can be difficult. Typical solutions to these problems brought about the
creation of special Hardware Description Languages such Verilog and VHDL for

Processes

54 SystemC 2.0 User’s Guide

modeling the hardware part of the system, and linking in C or C++ descriptions for
the software part of the design. SystemC has the concept of Methods, Threads, and
Clocked Threads to model the parallel activities of a system.

Basics

Some processes behave just like functions, the process is started when called, and
returns execution back to the calling mechanism when complete. Other processes
are called only once at the beginning of simulation and are either actively executing
or suspended waiting for a condition to be true. The condition can be a clock edge
or a signal expression or combination of both.

Processes are not hierarchical, so no process will call another process directly. Pro-
cesses can call methods and functions that are not processes.

Processes have sensitivity lists, i.e. a list of signals that cause the process to be
invoked, whenever the value of a signal in this list changes. Processes cause other
processes to execute by assigning new values to signals in the sensitivity list of the
other process.

To trigger a process a signal in the sensitivity list of the process must have an event
occur. The event on the signal is the triggering mechanism to activate the process.
An event on a signal is a change in the value of the signal. If a signal has a current
value of 1 and a new assignment updates the value to 0, an event will occur on the
signal. Any processes sensitive to that signal will recognize that there was an event
on that signal and invoke the process.

Method Process

When events (value changes) occur on signals that a process is sensitive to, the pro-
cess executes. A method executes and returns control back to the simulation kernel.
A simple method is shown below:

// rcv.h

#include "systemc.h"
#include "frame.h"

SystemC 2.0 User’s Guide 55

Method Process

SC_MODULE(rcv) {
 sc_in<frame_type> xin;
 sc_out<int> id;

 void extract_id();

 SC_CTOR(rcv) {
 SC_METHOD(extract_id);
 sensitive(xin);
 }
};

// rcv.cc

#include "rcv.h"
#include "frame.h"

void rcv::extract_id() {
 frame_type frame;

 frame = xin;
 if(frame.type == 1) {
 id = frame.ida;
 } else {
 id = frame.idb;
 }
}

This example shows a module called rcv that has an input named xin and an output
named id. The module contains a single method named extract_id. The method is
sensitive to any changes on input xin. When input xin changes, method extract_id is
invoked. Method extract_id will execute and assign a value to port id. When the
method terminates, control is returned back to the SystemC scheduler.

When a method process is invoked, it executes until it returns. Users are strongly
recommended to not write infinite loops within a method process as control will
never be returned back to the simulator.

Processes

56 SystemC 2.0 User’s Guide

Thread Processes

Thread Process can be suspended and reactivated. The Thread Process can contain
wait() functions that suspend process execution until an event occurs on one of the
signals the process is sensitive to. An event will reactivate the thread process from
the statement the process was last suspended. The process will continue to execute
until the next wait().

The input signals that cause the process to reactivate are specified by the sensitivity
list. The sensitivity list is specified in the module constructor with the same syntax
used in the Method Process example.

A sample Thread Process is shown below:

// traff.h

#include "systemc.h"

SC_MODULE(traff) {

 // input ports
 sc_in<bool> roadsensor;
 sc_in<bool> clock;

 // output ports
 sc_out<bool> NSred;
 sc_out<bool> NSyellow;
 sc_out<bool> NSgreen;
 sc_out<bool> EWred;
 sc_out<bool> EWyellow;
 sc_out<bool> EWgreen;

 void control_lights();
 int i;

 // Constructor
 SC_CTOR(traff) {

 SC_THREAD(control_lights); // Thread Process

SystemC 2.0 User’s Guide 57

Thread Processes

 sensitive << roadsensor;
 sensitive_pos << clock;
 }
};

// traff.cc

#include "traff.h"

void traff::control_lights() {
 NSred = false;
 NSyellow = false;
 NSgreen = true;
 EWred = true;
 EWyellow = false;
 EWgreen = false;

 while (true) {
 while (roadsensor == false)
 wait();
 NSgreen = false; // road sensor triggered
 NSyellow = true; // set NS to yellow
 NSred = false;
 for (i=0; i<5; i++)
 wait();

 NSgreen = false; // yellow interval over
 NSyellow = false; // set NS to red
 NSred = true; // set EW to green
 EWgreen = true;
 EWyellow = false;
 EWred = false;
 for (i= 0; i<50; i++)
 wait();

 NSgreen = false; // times up for EW green
 NSyellow = false; // set EW to yellow
 NSred = true;
 EWgreen = false;
 EWyellow = true;
 EWred = false;

Processes

58 SystemC 2.0 User’s Guide

 for (i=0; i<5; i++) // times up for EW yellow
 wait();
 NSgreen = true; // set EW to red
 NSyellow = false; // set NS to green
 NSred = false;
 EWgreen = false;
 EWyellow = false;
 EWred = true;
 for (i=0; i<50; i++) // wait one more long
 wait(); // interval before allowing
 // a sensor again
 }
}

This module is a simple traffic light controller. There is a main highway running
North-South that normally has a green light. A highway sensor exists on the East-
West road that crosses the highway. A car on the East-West side road will trigger
the sensor causing the highway light to go from green to yellow to red, and the side
road to change from red to green. The model uses two different time delays. The
green to yellow delay is longer than the yellow to red delay to represent the way
that a real traffic light works.

The starting state of the model will wait for an event on the road sensor. When this
occurs the NS (North-South) lights will change to yellow, and the model will wait
for the yellow to red delay. After the delay the NS lights are changed to red and the
EW (East-West) lights are changed to green. The model will now wait for the green
to yellow delay to allow the cars to have time to cross the highway. After this delay
is complete the EW lights are changed to yellow and finally to red. The module
waits one more long delay after the highway light goes back to green so that
another car will not trip the sensor immediately.

The module has one SC_THREAD process named control_lights. As can be seen
from the constructor it is sensitive to the roadsensor, shorttimer, and longtimer
input ports. In the steady-state condition the process will be waiting for events on
the roadsensor input.

The Thread Process is the most general process and can be used to model nearly
anything. An SC_METHOD process to model this same design would require more

SystemC 2.0 User’s Guide 59

Clocked Thread Process

typing and be more difficult to understand and maintain. Each change of state in the
traffic light controller would have to be declared as a state in a state machine.

Thread processes are implemented as co-routines and with the SystemC class
library. This implementation is slower than SC_METHOD processes. If simulation
speed is a current goal of the simulation, limit the SC_THREAD processes as
needed to maintain the highest simulation speed.

Clocked Thread Process

Clocked Thread Processes are a special case of a Thread Process. Clocked Thread
Processes help designers describe their design for better synthesis results. Clocked
Thread Processes are only triggered on one edge of one clock, which matches the
way hardware is typically implemented with synthesis tools. Clocked threads can
be used to create implicit state machines within design descriptions. An implicit
state machine is one where the states of the system are not explicitly defined.
Instead the states are described by sets of statements with wait() function calls
between them. This design creation style is simple and easy to understand. An
explicit state machine would define the state machine states in a declaration and use
a case statement to move from state to state.

To illustrate the Clock Thread Process, a bus controller example will be presented.
The example is a bus controller for a microcontroller application. It is a very simple
design so that the design can be described easily.

Let’s assume that we have a microcontroller with a 32-bit internal data path but
only one 8-bit external data path to get data to and from the controller. Every
address and data transaction will have to be multiplexed out over the 8-bit bus, 8
bits at a time. This is a perfect application for an implicit state machine and an
SC_CTHREAD process.

Processes

60 SystemC 2.0 User’s Guide

A 32-bit address will be passed to the bus controller process. This 32-bit address
will be multiplexed byte by byte through the 8-bit data bus to form the 32-bit
address in the memory controller. After the address has been sent the bus controller
will wait until the ready signal from the memory controller is active and start
receiving the 32 bits of data from the memory controller. After all of the data is
received the bus controller will send the data back to the microcontroller on the 32-
bit data bus. Each of these transfers takes 4 cycles of the clock to transfer the 32-bit
data 8 bits at a time.

The bus controller will initially wait for the newaddr signal to become active. When
newaddr becomes active a new address is present on the addr inputs. The start sig-
nal is sent to the memory controller with the first byte of the address on the data8
bus. Successive bytes are passed on bus8 until all of the bytes have been sent. The
bus controller will now wait for the ready signal from the memory controller. This
signal tells the bus controller that the data from the memory controller is ready.
Now the bus controller will transfer a byte at a time from bus8 to a temporary loca-
tion in the bus controller. Once the entire data value is received the data value is
transferred to output data and the datardy signal activated.

The SystemC description of the bus controller is shown below:

// bus.h

#include "systemc.h"

SC_MODULE(bus) {
 sc_in_clk clock;

Bus
Controller Memory

Controllerdata8

addr

data

start

ready

newaddr

datardy

32

8
32

SystemC 2.0 User’s Guide 61

Clocked Thread Process

 sc_in<bool> newaddr;
 sc_in<sc_uint<32> > addr;
 sc_in<bool> ready;
 sc_out<sc_uint<32> > data;
 sc_out<bool> start;
 sc_out<bool> datardy;
 sc_inout<sc_uint<8> > data8;

 sc_uint<32> tdata;
 sc_uint<32> taddr;

 void xfer();

 SC_CTOR(bus) {
 SC_CTHREAD(xfer, clock.pos());
 datardy.initialize(true); // ready to accept
 // new address
 }
};

// bus.cc

#include "bus.h"

void bus::xfer() {
 while (true) {
 // wait for a new address to appear
 wait_until(newaddr.delayed() == true);

 // got a new address so process it
 taddr = addr.read();
 datardy = false; // cannot accept new address now
 data8 = taddr.range(7,0);
 start = true; // new addr for memory controller
 wait();

 // wait 1 clock between data transfers
 data8 = taddr.range(15,8);
 start = false;
 wait();

Processes

62 SystemC 2.0 User’s Guide

 data8 = taddr.range(23,16);
 wait();

 data8 = taddr.range(31,24);
 wait();

 // now wait for ready signal from memory
 // controller
 wait_until(ready.delayed() == true);

 // now transfer memory data to databus
 tdata.range(7,0) = data8.read();
 wait();

 tdata.range(15,8) = data8.read();
 wait();

 tdata.range(23,16) = data8.read();
 wait();

 tdata.range(31,24) = data8.read();
 data = tdata;
 datardy = true; // data is ready, new addresses ok

 }
}

Notice that the constructor for module bus contains one SC_CTHREAD process.
The SC_CTHREAD process is different from the SC_THREAD process in a num-
ber of ways. First the SC_CTHREAD process specifies a clock object. When other
process types are described in a module constructor they only have the name of the
process specified, but the SC_CTHREAD process has the name of the process and
the clock that triggers the process. An SC_CTHREAD does not have a separate
sensitivity list like the other process types. The sensitivity list is just the specified
clock edge. The SC_CTHREAD process will be activated whenever the specified
clock edge occurs. In this example the positive edge of the clock is specified so pro-
cess xfer will execute on every positive edge of the clock.

Notice also that the constructor for the module bus uses the initialize() function of
port datardy to initialize it to true. In case a port is not yet bound, this is the only

SystemC 2.0 User’s Guide 63

Wait Until

way to initialize it. A direct assignment to the port or calling the write() function of
the port will cause an error. The latter two ways of initializing a port only works if
the port is already bound.

When the process first starts execution will stop at the first wait_until() method. A
wait_until() function will suspend execution until the expression passed as an argu-
ment is true. Once the newaddr signal has become true the process will assume that
a new address value exists on port addr. One point to keep in mind is that signals
assigned new values by an SC_CTHREAD process will be not be available until
after the next clock edge occurs.

The addr value will now be placed on output signal data8 one byte at a time. When
the first value of addr is output the start signal is activated to let the memory con-
troller know that a new address is coming. Once all of the address values have been
sent the process will now wait for the ready signal to come back from the memory
controller signaling that the memory data is ready to be read. The SC_CTHREAD
process will continue to be activated every clock edge, but execution will not con-
tinue until the wait_until() condition becomes true. (See the wait_until() description
in the next section)

Once the wait_until() condition becomes true the process will continue by reading
the data values from port data8 into temporary data structure tdata. Once all of the
data values have been read tdata is transferred to output data and the datardy signal
is set to true signaling the microcontroller that the data is ready to be read.

An SC_CTHREAD process can only be triggered by one clock edge. In the exam-
ple above a clock is passed to the bus module through port clock. Port clock is an
sc_in_clk port. The pos() or neg() method of this port is passed to the
SC_CTHREAD constructor to specify the clock edge that triggers the process.

Wait Until

In an SC_CTHREAD process wait_until() methods can be used to control the exe-
cution of the process. The wait_until() method will halt the execution of the process
until a specific event has occurred. This specific event is specified by the expres-
sion to the wait_until() method.

An example wait_until() method is shown below:

Processes

64 SystemC 2.0 User’s Guide

wait_until(roadsensor.delayed() == true);

This statement will halt execution of the process until the new value of roadsensor
is true. The delayed() method is required to get the correct value of the object. A
compilation error will result if the delayed() method is not present.

Only a boolean expression is allowed as argument of the wait_until() function and
only boolean signal objects can be used in the boolean expressions. Boolean signal
objects include clock type sc_clock, signal type sc_signal<bool>, and port types
sc_in<bool>, sc_out<bool>, and sc_inout<bool>.

More complex expressions are possible using boolean expressions. For instance the
statement below is also legal.

wait_until(clock.delayed() == true &&
 reset.delayed() == false);

Watching

SC_CTHREAD processes, just like SC_THREAD processes, typically have infi-
nite loops that will continuously execute. A designer typically wants some way to
initialize the behavior of the loop or jump out of the loop when a condition occurs.
This is accomplished through the use of the watching construct. The watching con-
struct will monitor a specified condition. When this condition occurs control is
transferred from the current execution point to the beginning of the process, where
the occurrence of the watched condition can be handled. The watching construct is
only available for SC_CTHREAD processes.

An example is shown below:

// datagen.h

#include "systemc.h"

SC_MODULE(data_gen) {
 sc_in_clk clk;
 sc_inout<int> data;
 sc_in<bool> reset;

SystemC 2.0 User’s Guide 65

Watching

 void gen_data();

 SC_CTOR(data_gen){
 SC_CTHREAD(gen_data, clk.pos());
 watching(reset.delayed() == true);
 }
};

// datagen.cc

#include "datagen.h"

void gen_data() {
 if (reset == true) {
 data = 0;
 }
 while (true) {
 data = data + 1;
 wait();

 data = data + 2;
 wait();

 data = data + 4;
 wait();
 }
}

This module is a simple data generator that will generate data output values that
increase in value whenever a new clock edge is detected. If the designer wants the
value of data to start again from 0, the watching expression needs to reset the
design.

In the constructor of the example is the following statement:

watching(reset.delayed() == true);

This statement specifies that signal reset will be watched for this process. If signal
reset changes to true then the watching expression will be true and the SystemC
scheduler will halt execution of the while loop for this process and start the execu-
tion at the first line of the process.

Processes

66 SystemC 2.0 User’s Guide

The delayed() function is required for the signal in a watching expression in order
for the description to compile properly. The delayed() function allows the compiler
to identify signals that are used in watching expressions. A lazy evaluation algo-
rithm is used for these signals which dramatically increases simulation perfor-
mance.

This behavior allows the designer to reset a design, or jump out of a loop, without
having to check the reset condition at each wait statement. To enable this behavior
for a particular process the watching statement must be added to the constructor,
and the implementation of the method must look like below:

void data_gen::gen_data () {
 // variable declarations

 // watching code
 if (reset == true) {
 data = 0;
 }

 // infinite loop
 while (true) {
 // Normal process function
 }
}

The process will execute the normal process functionality until the watched condi-
tion becomes true. When this happens the loop will be exited and execution of the
process will start at the beginning. In this example execution would start with the
statement shown below:

 if (reset == true) {

If reset is true, then data would be set to 0 and execution of the loop would start
again from the first statement.

Watching expressions are tested at every active edge of the execution of the pro-
cess. Therefore these signals are tested at the wait() or wait_until() calls in the infi-
nite loop.

SystemC 2.0 User’s Guide 67

Local Watching

One unexpected consequence of control exiting the while loop and starting again at
the beginning of the process is that all of the variables defined locally within the
process will lose their value. If a variable value is needed to be kept between invo-
cations of the process, declare the variable in the process module, and not local to
the process.

Multiple watches can be added to a process. The data type of the watched object
must be of type bool. If multiple watches are added to a process be sure to test
which watch expression triggered the exit from the loop. Then perform the appro-
priate watch action based on the expression that triggered the exit.

This type of watching is called global watching and cannot be disabled. If you need
to watch different signals at different times, then use local watching discussed in
the next section.

Local Watching

Local watching allows you to specify exactly which section of the process is watch-
ing which signals, and where the event handlers are located. This functionality is
specified with 4 macros that define the boundaries of each of the areas. A blank
example is shown below:

W_BEGIN
 // put the watching declarations here
 watching(...);
 watching(...);
W_DO
 // This is where the process functionality goes
 ...
W_ESCAPE
 // This is where the handlers for the watched events
 // go
 if (..) {
 ...
 }
W_END

Processes

68 SystemC 2.0 User’s Guide

The W_BEGIN macro marks the beginning of the local watching block. Between
the W_BEGIN and W_DO macros are where all of the watching declarations are
placed. These declarations look the same as the global watching events. Between
the W_DO macro and the W_ESCAPE macro is where the process functionality is
placed. This is the code that gets executed as long as none of the watching events
occur. Between the W_ESCAPE and the W_END macros is where the event han-
dlers reside. The event handlers will check to make sure that the relevant event has
occurred and then perform the necessary action for that event. The W_END macro
ends the local watching block.

There are a few interesting things to note about local watching:

• All of the events in the declaration block have the same priority. If a different
priority is needed then local watching blocks will need to be nested.

• Local watching only works in SC_CTHREAD processes.

• The signals in the watching expressions are sampled only on the active edges of
the process. In an SC_CTHREAD process this means only when the clock that
the process is sensitive to changes.

• Globally watched events have higher priority than locally watched events.

To show an example of local watching let’s modify the microcontroller bus exam-
ple from the SC_CTHREAD description on page 60 and allow the bus controller to
be interrupted during the memory to databus transfer, but not during the databus to
memory transfer. We will add local watching to the second part of the while loop
where data is transferred from the memory to the databus.

The new example is shown below:

// watchbus.cc

#include "bus.h"

void bus::xfer() {
 while (true) {
 // wait for a new address to appear
 wait_until(newaddr.delayed() == true);

 // got a new address so process it
 taddr = addr;
 datardy = false; // cannot accept new address now
 data8 = taddr.range(7,0);

SystemC 2.0 User’s Guide 69

Local Watching

 start = true; // new addr for memory controller
 wait();

 // wait 1 clock between data transfers
 data8 = taddr.range(15,8);
 start = false;
 wait();

 data8 = taddr.range(23,16);
 wait();

 data8 = taddr.range(31,24);
 wait();

 // now wait for ready signal from memory
 // controller
 wait_until(ready.delayed() == true);

 W_BEGIN
 watching(reset.delayed());
 // Active value of reset will trigger watching

 W_DO
 // the rest of this block is as before

 // now transfer memory data to databus
 tdata.range(7,0) = data8.read();
 wait();

 tdata.range(15,8) = data8.read();
 wait();

 tdata.range(23,16) = data8.read();
 wait();

 tdata.range(31,24) = data8.read();
 data = tdata;
 datardy = true; // data is ready, new addresses ok

 W_ESCAPE
 if (reset) {

Processes

70 SystemC 2.0 User’s Guide

 datardy = false;
 }
 W_END

 }
}

The second half of the model has been altered as shown by the statements in bold.
Macro W_BEGIN marks the beginning of the watched area. Inside the watched
area is a watching expression of signal reset. More than one watching expression
can be put into the declaration area.

After macro W_DO is the statement area for the process functionality of the mod-
ule. These statements are exactly the same as in the original model. The difference
is that if signal reset becomes active, execution will be transferred to the handler
statement area and not to the next statement in the block.

The W_ESCAPE macro marks the beginning of the handler area. This is the area
where statement execution will be transferred if one of the watched events becomes
active. Inside this area we have one handler for the reset event that is being
watched. If there were more events being watched then a corresponding handler
would be needed for each event.

Finally the W_END macro marks the end of the local watching block, any state-
ments outside of this macro will only be subject to global watching not local watch-
ing.

Triggering Processes with Events

 In order to generate an event and trigger a process, the port the process is sensitive
to must have an event. An important point to remember when trying to trigger a
process is that in order to generate an event the input signal must change value. In
the simplex example from Chapter 2 the retry field was added to the packet struc-
ture so that successive transmissions of the same packet would cause events. The
retry field was updated on every packet transmission causing the new packet value
to be different from the old and generating an event.

SystemC 2.0 User’s Guide 71

CHAPTER 5 Ports and Signals

Ports of a module are the external interface that pass information to and from a
module, and trigger actions within the module. Signals create connections between
module ports allowing modules to communicate.

A port can have three different modes of operation.

• Input

• Output

• InOut

An input port transfers data into a module. An output port transfers data out from a
module, and an inout port transfers data both into and out of a module depending on
module operation.

Ports and Signals

72 SystemC 2.0 User’s Guide

A signal connects the port of one module to the port of another module. The signal
transfers data from one port to another as if the ports were directly connected.
When a port is read the value of the signal connected to the port is returned. When a
port is written the new value will be written to the signal when the process perform-
ing the write operation has finished execution, or has been suspended. This is done
so that all operations within the process will work with the same value of the signal.
This is to prevent some processes seeing the old value while other processes see the
new value during execution. All processes executing during a time step will see the
old value of the signal. These signal semantics are the same as VHDL signal opera-
tion and Verilog deferred assignment behavior.

Ports are always bound to a signal except for one special case, when a port is bound
directly to another port. Ports are always bound to only one signal. That signal may
be a complex signal such as a structure, but it is still treated as one signal. Signal
binding occurs during module instantiation.

When building a hierarchical design structure, modules are instantiated within
other modules to form the hierarchy of the design. The special case binding men-
tioned earlier occurs when a top level module port is directly bound to a lower level
module port during instantiation. This is shown in the figure below:

PCI

Fifo

dindata

No signal required

SystemC 2.0 User’s Guide 73

In this example port data of module PCI is directly connected to port din of module
fifo. For this case no local signal is required.

Ports and signals also come in different sizes as hinted to earlier. Scalar ports have a
single dimension. A scalar port can be one of the following types:

C++ built in types

• long

• int

• char

• short

• float

• double

SystemC types

• sc_int<n>

• sc_uint<n>

• sc_bigint<n>

• sc_biguint<n>

• sc_bit

• sc_logic

• sc_bv<n>

• sc_lv<n>

• sc_fixed

• sc_ufixed

• sc_fix

• sc_ufix

• User defined structs

Input, output and inout ports are described using the following syntax as we have
seen in a number of examples already:

Ports and Signals

74 SystemC 2.0 User’s Guide

sc_in<porttype> // input port of type porttype
sc_out<porttype> // output port of type porttype
sc_inout<porttype> // inout port of type porttype

Type porttype can be any of the types mentioned above. Types will be described in
more detail in Chapter 6, “Data Types,”.

Reading and Writing Ports and Signals

You can use the read() and write() methods or the assignment operator for reading
and writing ports and signals. Using the assignment operator makes your code more
concise and more like HDL code because you read and write directly to the ports.

Use the read() and write() methods explicitly to clarify the exact intent of your
code, even though your code is slightly more verbose. The read() and write() meth-
ods are called by an implicit conversion defined within the port class.

If you need an implicit type conversion because the type that you are reading or
writing is different from the port type (for example, if a port is a bool and you are
reading or writing an int), it is important that you use the read() and write() meth-
ods. C++ automatically applies only one implicit type conversion at any particular
location, and you need two implicit conversions to read and write a different type
than the port type.

Array Ports and Signals

For some applications an array of ports might be desirable. For instance computer
generated design descriptions might use an array of ports for mapping configurable
sized objects. To declare an array port or signal the same syntax as C++ is used. An
example is shown below:

sc_in<sc_logic> a[32]; // creates ports a[0] to a[31]

SystemC 2.0 User’s Guide 75

Resolved Logic Vectors

 // of type sc_logic

This declaration creates an array of ports named a[0] to a[31] of type sc_logic. Each
port has to be individually bound to a port, assigned, and read.

Signal arrays can be created using similar syntax. An example signal array is shown
below:

sc_signal<sc_logic> i[16]; // creates signals i[0] to
 // i[15] of type sc_logic

This statement creates an array of signals named i[0] to i[15] of type sc_logic. Each
signal has to be individually bound to a port, assigned, and read.

Resolved Logic Vectors

Bus resolution becomes an issue when more than one driver is driving a signal.
SystemC uses a Resolved Logic Vector signal type to handle this issue. Take a look
at the example below with three drivers x, y, w, driving signal g.

Module A

Module B

Module C

x = 0

y = Z

w = Z

g = 0

Ports and Signals

76 SystemC 2.0 User’s Guide

Modules a, b, and c are driving signal g through ports x, y, and w respectively. Port
x is driving a 0 value, and ports y and w are driving Z values. The resolution of
these values will be assigned to signal g. In this example the resolved value will be
0. Ports y and w have their drivers disabled and are driving Z values. Therefore the
0 value from port x will “win”.

Another interesting case is shown below:

In this case ports x and y are driving a value while port w is not. However ports x
and y are driving opposite values. Since values 0 and 1 are the same strength or pri-
ority the final value of signal g cannot be determined and the value assigned will be
X.

The resolution function used is shown in the table below.

TABLE 1. Resolution of logic values

0 1 Z X

0 0 X 0 X

1 X 1 1 X

Z 0 1 Z X

X X X X X

Module B

Module C

x = 0

y = 1

w = Z

g = X

Module A

SystemC 2.0 User’s Guide 77

Resolved Vector Signals

To create a resolved logic vector port use the following syntax:

sc_in_rv<n> x; //input resolved logic vector n bits wide

sc_out_rv<n> y;// output resolved logic vector n
 //bits wide

sc_inout_rv<n> z; // inout resolved logic vector n
 //bits wide

The only limitation on the size of n is underlying system limitations. Resolved
Logic Vector ports should only be used where absolutely necessary as extra simula-
tion overhead is added versus standard ports. Typically a standard port with a scalar
or vector type should be used for better simulation efficiency.

Resolved Vector Signals

Signals are used to interconnect ports. Vector signals can be used to connect vector
ports. The vector signal types are the same as the vector port types. The currently
supported vector signal type is sc_signal_rv. This is a resolved vector of sc_logic
signals. An example is shown below:

sc_signal_rv<n> sig3; // resolved logic vector signal
 // n bits wide

Signals of this type can be used to connect to resolved logic vector ports.

NOTE: Do not initialize or write to a resolved (vector) signal outside of a process.
This will cause undesired behavior.

Ports and Signals

78 SystemC 2.0 User’s Guide

Signal Binding

As mentioned previously each port is bound to a single signal. When reading a port
the variable assigned the port value must have the same type as the port type. For
example a port of type sc_logic cannot be read into an int variable or signal.

When ports are bound to other signals or ports, both types must match. The exam-
ple below shows a port bound to another port (special case) and a port bound to a
signal.

// statemach.h

#include "systemc.h"

SC_MODULE(state_machine) {
 sc_in<sc_logic> clock;
 sc_in<sc_logic> en;
 sc_out<sc_logic> dir;
 sc_out<sc_logic> status;
 // ... other module statements
};

// controller.h

#include "statemach.h"

SC_MODULE(controller) {
 sc_in<sc_logic> clk;
 sc_out<sc_logic> count;
 sc_in<sc_logic> status;
 sc_out<sc_logic> load;
 sc_out<sc_logic> clear

 sc_signal<sc_logic> lstat;
 sc_signal<sc_logic> down;

 state_machine *s1;

 SC_CTOR(controller) {

SystemC 2.0 User’s Guide 79

Signal Binding

 // other module statements

 s1 = new state_machine ("s1");
 s1->clock(clk); // special case port to
 // port binding
 s1->en(lstat); // port en bound to signal lstat
 s1->dir(down); // port dir bound to signal down
 s1->st(status); // special case port to
 // port binding
 }
};

This example shows a controller module with a number of input and output ports.
The module also includes local signals lstat and down. The controller module
instantiates module state_machine with an instance label of s1. Below the state
machine instance are the port binding statements. The first statement:

s1->clock(clk);

binds port clock of instance s1 to external port clk of the controller. This is an
example of a special case binding in which a port is bound directly to another port
instead of a signal. The second port binding is shown below:

s1->en(lstat);

This statement binds port en of s1 to local signal lstat. This is an example of Named
Mapping as discussed in “Named Connection” on page 43. Positional Mapping is
discussed in “Positional Connection” on page 42.

Ports and Signals

80 SystemC 2.0 User’s Guide

Clocks

Clock objects are special objects in SystemC. They generate timing signals used to
synchronize events in the simulation. Clocks order events in time so that parallel
events in hardware are properly modeled by a simulator on a sequential computer.

A clock object has a number of data members to store clock settings, and methods
to perform clock actions. To create a clock object use the following syntax:

sc_clock clock1("clock1", 20, 0.5, 2, true);

This declaration will create a clock object named clock with a period of 20 time
units, a duty cycle of 50%, the first edge will occur at 2 time units, and the first
value will be true. All of these arguments have default values except for the clock
name. The period defaults to 1, the duty cycle to 0.5, the first edge to 0, and the first
value to true.

Typically clocks are created at the top level of the design in the testbench and
passed down through the module hierarchy to the rest of the design. This allows
areas of the design or the entire design to be synchronized by the same clock. In the
example below the sc_main routine of a design creates a clock and connects the
clock to instantiated components within the main module.

int sc_main(int argc, char*argv[]) {
 sc_signal<int> val;
 sc_signal<sc_logic> load;
 sc_signal<sc_logic> reset;
 sc_signal<int> result;

 sc_clock ck1("ck1", 20, 0.5, 0, true);

 filter f1("filter");
 f1.clk(ck1.signal());
 f1.val(val);
 f1.load(load);
 f1.reset(reset);
 f1.out(result);

 // rest of sc_main not shown

SystemC 2.0 User’s Guide 81

Clocks

}

In this example the top level routine sc_main instantiates a module called filter and
declares some local signals that will connect filter with other module instantiations.
Notice that a clk signal is not declared, instead a clock object is instantiated, its
parameters are setup, and its signal method is used to provide the clock signal.
Function ck1.signal() is mapped to the clk port of the filter object.

In this example the clock is named ck1 and the clock frequency is specified as 20
time units. Every 20 time units the clock will make a complete transition from true
to false and back to true as shown by the following figure.

FIGURE 2. Clock Waveform:

The duty cycle of the clock is the ratio of the high time to the entire clock period. In
this example the duty cycle is specified as 0.5. This means that the clock will be
true for 10 time units and false for 10 time units. If the duty cycle were specified as
0.25 then the clock would be true for 5 time units and false for 15 time units.

The next parameter of the clock object is the start time of the first edge. This is a
time offset from 0 of the first edge, expressed in time units. In this example the
specified value is 2 time units. The last argument is the starting value of the clock
object. The clock object will toggle the clock signal at appropriate times, but this
value is used to specify the first value of the clock. Based on the parameters speci-
fied the clock object will produce a clock signal as shown in Figure 2 below:

20

clock

Ports and Signals

82 SystemC 2.0 User’s Guide

FIGURE 3. Offset Clock Waveform

When binding the clock to a port the designer must use the clock signal generated
by the clock object to map to a port. This done by using the signal method of the
clock object. Notice that the clk port of filter is mapped to ck1.signal(). This is the
clock signal generated by the clock object.

For SC_CTHREAD processes the clock object is directly mapped to the clock input
of the process and the signal() method is not required.

0 2 12 22 32 42 52

clock

SystemC 2.0 User’s Guide 83

CHAPTER 6 Data Types

SystemC provides the designer the ability to use any and all C++ data types as well
as unique SystemC data types to model systems.

C++ data types are discussed in C++ books, so they will not be discussed here. The
SystemC data types include the following:

• sc_bit – 2 value single bit type

• sc_logic – 4 value single bit type

• sc_int – 1 to 64 bit signed integer type

• sc_uint – 1 to 64 bit unsigned integer type

• sc_bigint – arbitrary sized signed integer type

• sc_biguint – arbitrary sized unsigned integer type

• sc_bv – arbitrary sized 2 value vector type

• sc_lv – arbitrary sized 4 value vector type

• sc_fixed - templated signed fixed point type

• sc_ufixed - templated unsigned fixed point type

• sc_fix - untemplated signed fixed point type

Data Types

84 SystemC 2.0 User’s Guide

• sc_ufix - untemplated unsigned fixed point type

Each of these types will be discussed in more detail in the next sections. The fixed
point types are described in more detail in the next chapter.

Type sc_bit

Type sc_bit is a two valued data type representing a single bit. A variable of type
sc_bit can have the value ’0’(false) or ’1’(true) only. This type is useful for model-
ing parts of the design where Z (hi impedance) or X (unknown) values are not
needed.

There are a number of logical and comparison operators that work with sc_bit
including:

For those not familiar with the special assignment operators of C/C++ here is how
these work. In a typical language the designer might write:

a = a & b;
a = a | b

In C++ this can also be written as:

a &= b
a |= b

Values are assigned using the character literals ’1’ and ’0’. When performing bool-
ean operations type sc_bit objects can be mixed with the C/C++ bool type. Objects
of type sc_bit are good for representing single bits of a design where logical opera-

TABLE 2. sc_bit Operators

Bitwise &(and) |(or) ^(xor) ~(not)

Assignment = &= |= ^=

Equality == !=

SystemC 2.0 User’s Guide 85

Type sc_logic

tions will be performed. To declare an object of type sc_bit use the following syn-
tax.

sc_bit s;

Type sc_logic

A more general single bit type is sc_logic. This type has 4 values, ’0’(false),
’1’(true), ’X’ (unknown), and ’Z’ (hi impedance or floating). This type can be used
to model designs with multi driver busses, X propagation, startup values, and float-
ing busses. Type sc_logic has the most common values used in VHDL and Verilog
simulations at the RTL level.

Type sc_logic has a number of logical, comparison, and assignment operators that
can be used with objects of this type. These include the following:

These operators are implemented such that operands of type sc_logic can be mixed
with operands of type sc_bit. One of the operands must be type sc_logic, the other
operands can be sc_logic or sc_bit.

Values are assigned to sc_logic objects using the character literals shown below:

• ’0’ – 0 or false value

• ’1’ – 1 or true value

TABLE 3. sc_logic Operators

Bitwise &(and) |(or) ^(xor) ~(not)

Assignment = &= |= ^=

Equality == !=

Data Types

86 SystemC 2.0 User’s Guide

• ’X’ – unknown or indeterminate value

• ’Z’ – hi impedance or floating value

An example assignment is shown below:

sc_logic x; // object declaration

x = ’1’; // assign a 1 value
x = ’Z’; // assign a Z value

The comparison operators == and != are implemented so that a designer can com-
pare two sc_logic objects, an sc_logic object and an sc_bit object, or an sc_logic
object and one of the character literal values. The following comparisons are imple-
mented:

sc_bit x;
sc_logic y,z;

x == y; // sc_bit and sc_logic
y != z; // sc_logic and sc_logic
y == ’1’ // sc_logic and character literal

The assignment operator allows assigning a character literal value or another
sc_logic object to an sc_logic object. Additionally an sc_bit can be converted to an
sc_logic through the assignment. The following assignments are conversions.

sc_bit x;
sc_logic y;

x = y; // sc_logic to sc_bit
y = x; // sc_bit to sc_logic

The first assignment will convert an sc_logic type to an sc_bit type. Since an sc_bit
object has 2 values while an sc_logic type has 4 values, the values ’Z’ and ’X’ can-
not be converted to an sc_bit. If the value of the sc_logic object is ’Z’ or ’X’ when

SystemC 2.0 User’s Guide 87

Fixed Precision Unsigned and Signed Integers

assignment occurs, the result of the assignment is undefined and a runtime warning
is issued.

Fixed Precision Unsigned and Signed Integers

Some systems need arithmetic operations on fixed size arithmetic operands. The
Signed and Unsigned Fixed Precision Integer types provide this functionality in
SystemC. The C++ int type is machine dependent, but usually 32 bits. If the
designer were only going to use 32 bit arithmetic operations then this type would
work. However the SystemC integer type provides integers from 1 to 64 bits in
signed and unsigned forms.

The underlying implementation of the fixed precision type is a 64 bit integer. All
operations are performed with a 64 bit integer and then converted to the appropriate
result size through truncation. If the designer multiplies two 44 bit integers the
maximum result size is 64 bits, so only 64 bits are retained. If the result is now
assigned to a 44 bit result, 20 bits are removed. If more precision is needed use
Arbitrary Precision Integers described in the next section. The fastest simulation
speed will be obtained by using the built-in C++ data types int, long, etc. However
these types only work for a fixed data size of 8, 16 or 32 bits. The second fastest
simulation speed can be obtained by using the Fixed Precision Integers. The slow-
est simulation time will come from using the Arbitrary Precision Integers. So
whenever possible use the Fixed Precision Integers over Arbitrary Precision Inte-
gers for the fastest simulation speed.

Type sc_int<n> is a Fixed Precision Signed Integer, while type sc_uint<n> is a
Fixed Precision Unsigned Integer. The signed type is represented using a 2’s com-
plement notation. The underlying operations use 64 bits, but the result size is deter-
mined at object declaration. For instance the following declaration declares a 64 bit
unsigned integer and a 48 bit unsigned integer.

Data Types

88 SystemC 2.0 User’s Guide

sc_int<64> x;
sc_uint<48> y;

Integer types have a very rich set of operators that work with them as shown by the
list below:

Bitwise operators work on operands bit by bit. The not(~) operator will invert all
bits, and the shift operators will shift left(<<) or right(>>) an operand by the speci-
fied number of bits. An example is shown below:

sc_int<16> x, y, z;

z = x & y; // perform and operation on x and y bit
 // by bit
z = x >> 4; // assign x shifted right by 4 bits to z

With the addition of arithmetic operators for SystemC Integer types, new assign-
ment operators are also available. For instance the += operator will allow a more
terse description of the following statement:

x = x + y; // traditional way

TABLE 4. Fixed Precision Integer Operators

Bitwise ~ & | ^ >> <<

Arithmetic + - * / %

Assignment = += -= *= /= %= &= |= ^=

Equality == !=

Relational < <= > >=

Autoincrement ++

Autodecrement --

Bit Select [x]

Part Select range()

Concatenation (,)

SystemC 2.0 User’s Guide 89

Fixed Precision Unsigned and Signed Integers

x += y; // terse method

To select one bit of an integer use the bit select operator as shown below:

sc_logic mybit;
sc_uint<8> myint;

mybit = myint[7];

To select more than one bit use the range method as shown below:

sc_uint<4> myrange;
sc_uint<32> myint;

myrange = myint.range(7,4);

Finally the concatenation operator can be used to make a larger value from one or
more smaller values. An example is shown below:

sc_uint<4> inta;
sc_uint<4> intb;
sc_uint<8> intc;

intc = (inta, intb);

Operands inta, and intb are concatenated together to form an 8 bit integer and then
assigned to integer intc.

The auto increment and auto decrement operators are another method of making the
description more concise and terse. The auto increment operator will increment the
operand it is attached to, and the auto decrement operator will decrement the oper-
and. For instance instead of writing:

a = a + 1;

Data Types

90 SystemC 2.0 User’s Guide

The auto increment operator will allow:

a++;

Variable of type sc_uint (unsigned) can be converted to type sc_int (signed) with
the = (assignment) operator. In the same way variables of type sc_int can be con-
verted to sc_uint. When the = operator is used any extra bits are removed and sign
bits are added and extended as necessary. An example is shown below:

sc_uint<8> uint1, uint2;
sc_int<16> int1, int2;

uint1 = int2; // convert int to uint
int1 = uint2; // convert uint to int

In the first statement an integer is converted to an unsigned integer. The absolute
value of int2 will be assigned to uint1. If int2 is a negative value only the magnitude
will be assigned to uint1. Since int2 is 16 bits while uint1 is 8 bits uint2 will be con-
verted to a 64 bit unsigned number and then truncated to 8 bits before assignment to
uint1.

In the second statement uint2 is assigned to int1. First uint2 will be converted to a
64 bit signed value then truncated and assigned to int1.

Type sc_int and sc_uint can be used with C++ integer types without restriction.
C++ integer types can be freely mixed with SystemC types.

Speed Issues

As previously mentioned when SystemC integers are used 64 bits of precision are
used. However if no more than 32 bits are ever needed simulation speed can be

SystemC 2.0 User’s Guide 91

Arbitrary Precision Signed and Unsigned Integer Types

increased by using 32 bits for the underlying precision. This is accomplished by
compiling with a special compiler flag, -D_32BIT_. This compile flag will limit the
size of the underlying arithmetic precision to 32 bits instead of 64.

Arbitrary Precision Signed and Unsigned Integer
Types

There are cases in HDL based design where operands need to be larger than 64 bits.
For these types of designs sc_int and sc_uint will not work. For these cases use type
sc_biguint (arbitrary size unsigned integer) or sc_bigint (arbitrary sized signed inte-
ger). These types allow the designer to work on integers of any size, limited only by
underlying system limitations. Arithmetic and other operators also use arbitrary
precision when performing operations. Of course this extra functionality comes at a
price. These types execute more slowly than their fixed precision counterparts and
therefore should only be used when necessary. While sc_bigint and sc_biguint will
work with any operand sizes, they should only be used on operands larger than 64
bits or for operations where more than 64 bits of precision are required.

Type sc_bigint is a 2’s complement signed integer of any size. Type sc_biguint is an
unsigned integer of any size. When using arbitrary precision integers the precision
used for the calculations depends on the sizes of the operands used. Look at the
example below:

sc_biguint<128> b1;
sc_biguint<64> b2;
sc_biguint<150> b3;

b3 = b1*b2;

In this example b1, a 128 bit integer is multiplied by b2, a 64 bit integer. The result
will be a 192 bit integer. However since b3 is only 150 bits wide 42 bits will be
removed from the result before assignment to b3.

For performance reasons a variable named MAX_NBITS is defined in
sc_constants.h. This constant specifies the maximum number of bits to be used for

Data Types

92 SystemC 2.0 User’s Guide

an arbitrary precision integer operation. Defining this variable provides a 2-3X per-
formance increase. The default value is 512, but can be changed if larger operands
are required.

The same operators used for Fixed Precision Integers are also available for Arbi-
trary Precision Integers. These operators are shown in the table below:

These operators use arbitrary precision for the underlying operations, unlike the
fixed precision types. The real difference between the two types is the underlying
precision and the slower simulation speed. Arbitrary Precision Integer types can
have much greater precision but may simulate much slower so their use should be
limited to only where needed.

Types sc_biguint, sc_bigint, sc_int, sc_uint, and C++ integer types can all be mixed
together in expressions. Also the = operator can be used to convert from one type to
another.

TABLE 5. Arbitrary Precision Integer Operators

Bitwise ~ & | ^ >> <<

Arithmetic + - * / %

Assignment = += -= *= /= %= &= |= ^=

Equality == !=

Relational < <= > >=

Autoincrement ++

Autodecrement --

Bit Select [x]

Part Select range()

SystemC 2.0 User’s Guide 93

Arbitrary Length Bit Vector

Arbitrary Length Bit Vector

SystemC also contains a 2 valued arbitrary length vector to be used for large
bit_vector manipulation. If the designer does not need tristate capability and no
arithmetic operations are to be performed directly on the data, then sc_bv is the
ideal type for the object. The sc_bv type will simulate faster than the sc_lv type yet
still allow data manipulations on very large vectors. Type sc_biguint could also be
used for these operations but type sc_biguint is optimized for arithmetic operations,
not bit manipulation operations and type sc_bv will simulate faster.

The sc_bv type introduces some new operators that perform bit reduction. These
operators take the entire set of bits of the operand and generate a single bit result.
For instance to find out if databus is all 0’s the following operation could be per-
formed:

sc_bv<64> databus;
sc_logic result;

result = databus.or_reduce();

If databus contains 1 or more 1 values the result of the reduction will be 1. If no 1
values are present the result of the reduction will be 0 indicating that databus is all
0’s.

Bit selection, part selection and concatenation all work with sc_bv objects. Remem-
ber these operators work on both sides of an assignment operator and in expres-
sions. The following expressions are legal.

sc_bv<16> data16;
sc_bv<32> data32;

data32.range(15,0) = data16;
data16 = (data32.range(7,0), data32.range(23,16));
(data16.range(3,0),data16.range(15,12)) =
data32.range(7,0);

Data Types

94 SystemC 2.0 User’s Guide

In the first example a range of a large sc_bv object is assigned a smaller sc_bv
object. In the second example a small sc_bv object is assigned the concatenation of
two fields from a larger sc_bv object. In the final example a concatenated range of a
smaller sc_bv object is assigned a range from a large sc_bv object.

The operations supported by sc_bv are shown in the table below:

A single bit can be selected from an sc_bv object using the bit selection operator [].
An example is shown below:

sc_bit y;
sc_bv<8> x;

y = x[6];

More than one bit can be selected using part selection. Part selection uses the range
function to specify the range of bits to select. An example is shown below:

sc_bv<16> x;
sc_bv<8> y;

y = x.range(0,7);

Notice that sc_bv types cannot have arithmetic performed directly on them. To per-
form arithmetic functions first assign sc_bv objects to the appropriate SystemC
integer. Perform the arithmetic operation on the integer type. If the application war-

TABLE 6. Arbitrary Length Bit Vector Operators

Bitwise ~ & | ^ << >>

Assignment = &= |= ^=

Equality == !=

Bit Selection [x]

Part Selection range()

Concatenation (,)

Reduction and_reduce() or_reduce() xor_reduce()

SystemC 2.0 User’s Guide 95

Arbitrary Length Logic Vector

rants then copy the results of the arithmetic operations back to the sc_bv type. The
= operator is overloaded to allow assignment of a sc_bv type to a SystemC integer
and vice versa.

The = operator will convert sc_bv objects to sc_lv objects and vice versa. Strings of
’0’ and ’1’ characters can be assigned to type sc_bv objects. For instance to set a 16
bit sc_bv to all 1’s you can use the following statement:

sc_bv<16> val;
val = "1111111111111111";

Only the characters ’0’ and ’1’ can be used in assignments to sc_bv objects.

Arbitrary Length Logic Vector

Different data types are used to model the types of data used in a typical design.
Types sc_logic and sc_bit work well for modeling single bits accurately. Types
sc_int, sc_uint, sc_bigint, and sc_biguint work well for modeling parts of the
design where arithmetic operations can occur, but no tristate busses. However for
parts of the design that need to be modeled with tristate capabilities yet contain
items that are wider than 1 bit, SystemC contains a type called sc_lv<n>. This type
represents an arbitrary length vector value where each bit can have one of four val-
ues. These values are exactly the same as the four values of type sc_logic. Type
sc_lv<n> is really just a variable sized array of sc_logic objects.

To declare a signal of type sc_lv<n> use the following syntax:

sc_signal<sc_lv<64> > databus; // extra space is
 // required

This declaration describes a 64 bit wide signal called databus in which each of the
bits of the signal can have the value ’0’, ’1’, ’X’, and ’Z’. This signal can be driven
by a number of sources to model a tristate bus.

It is very important to note that the extra space after the first > is required to allow
the declaration to compile.

Data Types

96 SystemC 2.0 User’s Guide

The operations that can be performed on an sc_lv object are exactly the same as
those for an sc_bv object. The only difference is the speed of the simulation. The
design implemented with sc_bv will simulate much faster than the design imple-
mented with sc_lv.

Notice that sc_lv types cannot have arithmetic performed directly on them. To per-
form arithmetic functions first assign sc_lv objects to the appropriate SystemC inte-
ger. Perform the arithmetic operation on the integer type. If the application warrants
then copy the results of the arithmetic operations back to the sc_lv type. The =
operator is overloaded to allow assignment of a sc_lv type to a SystemC integer and
vice versa.

To convert an sc_lv type to an arithmetic type use the = operator. This is shown
below:

sc_uint<16> uint16;
sc_int<16> int16;
sc_lv<16> lv16;

lv16= uint16; // convert uint to lv
int16 = lv16; // convert lv to int

The first statement converts an unsigned integer to a logic vector 16 bits wide. The
second statement converts a logic vector to a 16 bit signed integer. Any X’s or Z’s
in the logic vector will produce a runtime warning and the results will be undefined.

A common function needed to properly model a tristate bus is the ability to turn off
all drivers to the bus. To perform this step assign a string of ’Z’ values to the sc_lv
object. This is shown below:

sc_lv<16> bus1;

if (enable) {
 bus1 = in1
} else {
 bus1 = "ZZZZZZZZZZZZZZZZ";
}

SystemC 2.0 User’s Guide 97

Logic Vector Speed Issues

This assignment will assign a Z value to all 16 locations of bus1. The character
string has to be at least as long as the logic vector object. The character string can
contain any combination of the four values, ’0’, ’1’, ’X’, and ’Z’. So another legal
string for bus1 would be the following:

bus1 = "01XZ01XZ01XZ01XZ";

To print a human readable character string of the value from an sc_lv object use the
to_string() method as shown:

sc_lv<32> bus2;

cout << "bus = " << bus2.to_string();

Logic Vector Speed Issues

The bit vector type will always simulate faster than the logic vector type. When cre-
ating a design try to use the bit vector types over the logic vector types as much as
possible. The logic vector type will be needed to model the cases where the reset
behavior of the design is important or the vector will be used in a tristate environ-
ment. For all other cases the bit vector type should be used to create the fastest sim-
ulation.

User Defined Type Issues

Comparison Operator

For scalar types the built-in comparison operators are used to determine whether or
not a value changed, which generate an event. For user defined types such as
packet_type used in the simplex example in Chapter 2 the designer needs to provide
the == operator. Looking back at packet.h we see the following:

Data Types

98 SystemC 2.0 User’s Guide

 inline bool operator == (const packet_type& rhs) const
 {

 return (rhs.info == info && rhs.seq == seq &&
 rhs.retry == retry);

 }

This method defines the fields that are to be compared and how the comparison is
made. An event occurs if the comparison result indicates that the previous packet
and new packet are different.

Tracing a User Defined Type

Notice that the packet.h file from Chapter 2 also traces the signals of user defined
type packet_type. Because this type has a number of fields, you need to specify
tracing of each field to see the contents of the packet. This process is not automatic.
You can define a special user trace method that is called when an object of this type
is traced. This user method can be defined in the user defined type.

Looking back at files packet.h and packet.cc from Chapter 2, we can see that the
user defined type packet_type has an sc_trace method defined in packet.h. This
method defines how to trace an object of type packet_type. The declaration of the
method, the argument types, and the return value in the packet.h file is shown
below:

 extern
void sc_trace(sc_trace_file *tf, const packet_type& v,
const sc_string& NAME);

Notice that the second argument is of type packet_type, which makes this method
unique. File packet.cc contains the implementation of the sc_trace method as
shown below:

 void sc_trace(sc_trace_file *tf, const packet_type& v,
 const sc_string& NAME) {

 sc_trace(tf,v.info, NAME + ".info");
 sc_trace(tf,v.seq, NAME + ".seq");
 sc_trace(tf,v.retry, NAME + ".retry");

 }

SystemC 2.0 User’s Guide 99

User Defined Type Issues

The implementation of the trace method has a trace for each field of the struct. This
method is called by the designer to perform a trace on a signal of type packet_type,
and is automatically created by the compiler. Each call to the trace method will per-
form a trace on all of the fields of the user defined type.

Data Types

100 SystemC 2.0 User’s Guide

SystemC 2.0 User’s Guide 101

CHAPTER 7 Fixed Point Types

When designers model at a high level, floating point numbers are useful to model
arithmetic operations. Floating point numbers can handle a very large range of val-
ues and are easily scaled. In hardware floating point data types are typically con-
verted or built as fixed point data types to minimize the amount of hardware needed
to implement the functionality. To model the behavior of fixed point hardware
designers need bit accurate fixed point data types. Fixed point types are also used to
develop DSP software.

SystemC contains signed and unsigned fixed point data types that can be used to
accurately model hardware. The SystemC fixed point data types are accurate to the
bit level and support a number of features that allow a high level of modeling.
These features include modeling quantization and overflow behavior at a high
level.

There are 4 basic types used to model fixed point types in SystemC. These are:

• sc_fixed

• sc_ufixed

• sc_fix

• sc_ufix

Fixed Point Types

102 SystemC 2.0 User’s Guide

Types sc_fixed and sc_ufixed uses static arguments to specify the functionality of
the type while types sc_fix and sc_ufix can use argument types that are nonstatic.
Static arguments must be known at compile time, while nonstatic arguments can be
variables. Types sc_fix and sc_ufix can use variables to determine word length,
integer word length, etc. while types sc_fixed and sc_ufixed are setup at compile
time and do not change.

Types sc_fixed and sc_fix specify a signed fixed point data type. Types sc_ufixed
and sc_ufix specify an unsigned fixed point data type.

An object of a fixed point type is declared with the following syntax:

• sc_fixed<wl, iwl, q_mode, o_mode, n_bits> x;

• sc_ufixed<wl, iwl, q_mode, o_mode, n_bits> y;

• sc_fix x(list of options);

• sc_ufix y(list of options);

The arguments to sc_fixed and sc_ufixed are used as follows:

wl - Total word length, used for fixed point representation. Equivalent to the total
number of bits used in the type.

iwl - Integer word length - specifies the number of bits that are to the left of the
binary point (.) in a fixed point number.

q_mode - quantization mode, this parameter determines the behavior of the fixed
point type when the result of an operation generates more precision in the least sig-
nificant bits than is available as specified by the word length and integer word
length parameters.

o_mode - overflow mode, this parameter determines the behavior of the fixed point
most significant bits when an operation generates more precision in the most signif-
icant bits than is available.

n_bits - number of saturated bits, this parameter is only used for overflow mode and
specifies how many bits will be saturated if a saturation behavior is specified and an
overflow occurs.

x,y - object name, name of the fixed point object being declared.

SystemC 2.0 User’s Guide 103

Word Length and Integer Word Length

The designer can configure the fixed point data type to perform a number of differ-
ent types of operations. The designer will pass different values of the parameters
shown above. These parameter values will be used during the construction of the
fixed point type to create the desired data type. These types can be the basis for
adders, subtractors, multipliers, accumulators, FFTs, etc. All of these devices can be
built with bit accurate results

A simple fixed point declaration is shown below:

sc_fixed<8,4,SC_RND,SC_SAT> val;

Word Length and Integer Word Length

Two of the arguments specified to the fixed point data type were word length (wl)
and integer word length (iwl). Word length must be greater than 0. Integer word
length can be positive or negative, and larger than the word length. For instance if
the word length is specified as 5 bits but the integer word length is 7 then two
zeroes will be added to the end of the object. This is shown below:

If the integer word length is a negative value then sign bits after the binary point
will be extended. For instance if wl = 5 and iwl = -2 then two sign bits will be added
to the object as shown below:

xxxxx00.
word length = 5

integer word length = 7

Fixed Point Types

104 SystemC 2.0 User’s Guide

More typical cases will not add bits. For instance if wl = 5 and iwl = 3 then the fol-
lowing will result:

More examples of wordlength, integer wordlength combinations are shown in the
table below:

(*) x is an arbitrary binary digit, 0 or 1. s is a sign extended digit, 0 or 1.

Index wl iwl
Internal
representation (*)

Range
signed

Range
unsigned

1 5 7 xxxxx00. [-64,60] [0,124]

2 5 5 xxxxx. [-16,15] [0,31]

3 5 3 xxx.xx [-4,3.75] [0,7.75]

4 5 1 x.xxxx [-1,0.9375] [0,1.9375]

5 5 0 .xxxxx [-0.5,0.46875] [0,0.96875]

6 5 -2 .ssxxxxx [-0.125,0.109375] [0,0.234375]

7 1 -1 .sx [-0.25,0] [0,0.25]

.ssxxxxx
word length = 5

integer word length = -2

xxx.xx
word length = 5

integer word length = 3

SystemC 2.0 User’s Guide 105

Quantization Modes

Quantization Modes

As mentioned previously quantization effects are used to determine what happens
to the LSBs of a fixed point type when more bits of precision are required than are
available. For instance if the result of a multiplication operation generates more
LSB precision than can be represented by the result type, quantization will occur.
After quantization the result is a function of the deleted bits and remaining bits of
the original fixed point number.

The quantization modes available are shown by the table below:

Operations performed on fixed point data types are done using arbitrary precision.
After the operation is complete the resulting operand is cast to fit the fixed point
data type object. The casting operation will apply the quantization behavior of the
target object to the new value and assign the new value to the target object. For
instance in the example below the new value is calculated with 12 bits of precision,
and 4 bits right of the binary point. When writing to the second fixed point object
with only 2 bits to the right of the binary point, 2 bits will have to be removed. How
these bits are removed is a function of the quantization mode.

xxxxxxxx.xxxx // 12 bits, 4 right of binary point
xxxxxxxx.xx // 10 bits, 2 right of binary point

The next sections are going to describe each of the quantization modes in more
detail.

Quantization Mode Name

Rounding to plus infinity SC_RND

Rounding to zero SC_RND_ZERO

Rounding to minus infinity SC_RND_MIN_INF

Rounding to infinity SC_RND_INF

Convergent rounding SC_RND_CONV

Truncation SC_TRN

Truncation to zero SC_TRN_ZERO

Fixed Point Types

106 SystemC 2.0 User’s Guide

SC_RND

The SC_RND mode will round the value to the closest representable number. This
is accomplished by adding the MSB of the removed bits to the remaining bits. The
effect is to round towards plus infinity. A graph showing the effect of this rounding
is shown below:

The x axis is the result of the previous arithmetic operation and the y axis is the
value after quantization.

The diagonal line shows the ideal number representation given infinite bits. The
small horizontal lines show the effect of the rounding. Any value within the range
of the line will be rounded to the y value of the line. The graph is given in terms of
q, which is the smallest quantization unit of the target object.

SC_RND Examples

The first example will show the SC_RND quantization mode with a positive num-
ber. Two objects x and y are declared as sc_fixed types. A value is assigned to x.
Then y is assigned the value x. However the value of x is outside the range of repre-
sentation for y so quantization will occur.

3q

2q

q

q 2q 3q

y

x

SystemC 2.0 User’s Guide 107

SC_RND

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND> y;

x = 1.25;
y = x; // quantization will occur here

01.01 (1.25) // representation of x value
01.1 (1.5) // quantized y value

Value 1.25 is outside the range that can be exactly represented by the result fixed
point type, sc_fixed<3,2,SC_RND>. Therefore quantization will occur.

When the MSB of the deleted bits is added to the remaining bits the result will be
1.5.

Here is another example using the same types, but a negative value.

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND> y;

x = -1.25;
y = x; // quantization will occur here

10.11 (-1.25) // representation of x value
11.0 (-1) // quantized y value

Again -1.25 is outside the representable range for the result type so quantization
occurs. The MSB of the deleted bits is added to the remaining bits causing the
result to be -1.

The last example shows the result with unsigned types.

sc_ufixed<16,8> x;
sc_ufixed<12,8,SC_RND> y;

x = 38.30859375;
y = x; // quantization will occur here

00100110.01001111 (38.30859375) // x value
00100110.0101 (38.3125) // quantized y value

The MSB of the deleted bits is added to the remaining bits to return the result.

Fixed Point Types

108 SystemC 2.0 User’s Guide

SC_RND_ZERO

This quantization mode will perform an SC_RND operation if the two nearest rep-
resentable numbers are not an equal distance apart. Otherwise rounding to zero will
be performed. For positive numbers this means that the redundant bits are simply
deleted. For negative numbers the MSB of the deleted bits is added to the remain-
ing bits. A graph showing this effect is shown below:

The diagonal line represents the ideal number representation given infinite bits. The
small horizontal lines show the effect of the rounding. Any value within the range
of the line will be converted to the value of the y axis.

SC_RND_ZERO Examples

Two exampes are shown below. The first shows quantization of a positive number
and the second the quantization of a negative number.

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND_ZERO> y;

x = 1.25;

3q

2q

q

q 2q 3q

y

x

SystemC 2.0 User’s Guide 109

SC_RND_ZERO

y = x; // quantization occurs here

01.01 (1.25) // value of x after assignment
01.0 (1) // quantized value of y

Value 1.25 is outside the representation range of sc_fixed<3,2,SC_RND_ZERO>
so quantization will be performed. Since this is a positive number the redundant
bits are simply deleted. The next example shows the same types with a negative
number.

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND_ZERO> y;

x = 1.25;
y = x; // quantization occurs here

10.11 (-1.25) // value of x after assignment
11.0 (-1) // quantized value of y

Value -1.25 is outside the representation range of the result type so quantization
will occur. Since this value is a negative number the MSB of the deleted bits will be
added to the remaining bits. Value -1.25 will be rounded to -1.

The last example shows an unsigned value.

sc_ufixed<14,9> x;
sc_ufixed<13,9,SC_RND_ZERO> y;

x = 38.28125;
y = x; // quantization occurs here

000100110.01001 (38.28125) // x value after assign
000100110.0100 (38.25) // quantized y value

The last example is a positive number by default so the redundant bits are deleted.

Fixed Point Types

110 SystemC 2.0 User’s Guide

SC_RND_MIN_INF

This quantization mode will also perform a check to see if the nearest 2 represent-
able numbers are equal distance apart. If not the SC_RND quantization is per-
formed. Otherwise this mode will round towards minus infinity by eliminating the
redundant bits of the LSB of the number. A graph showing this effect is shown
below:

The diagonal line represents the ideal number representation given infinite bits. The
small horizontal lines show the effect of the rounding. Any value within the range
of the line will be converted to the value of the y axis.

SC_RND_MIN_INF Examples

The next two examples show the result of the SC_RND_MIN_INF quantization
mode with a positive and a negative number signed number. The third example
shows an unsigned number.

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND_MIN_INF> y;

3q

2q

q

q 2q 3q

y

x

SystemC 2.0 User’s Guide 111

SC_RND_MIN_INF

x = 1.25;
y = x; // quantization occurs here

01.01 (1.25) // value of x after assignment
01.0 (1) // value of y after quantization

Value 1.25 is outside the representable range of the result type so quantization will
occur. For positive numbers the redundant bits are simply deleted resulting in the
value 1. The next example uses the same types but a negative number.

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND_MIN_INF> y;

x = -1.25;
y = x; // quantization occurs here

10.11 (-1.25) // value of x after assignment
10.1 (-1.5) // value of y after quantization

Value -1.25 is outside the representable range for the result type, so quantization
occurs. The result number is rounded towards minus infinity by removing the
redundant bits. This produces the result -1.5.

The last example uses an unsigned number.

sc_ufixed<14,9> x;
sc_ufixed<13,9,SC_RND_ZERO> y;

x = 38.28125;
y = x; // quantization occurs here

000100110.01001 (38.28125) // x after assign
000100110.0100 (38.25) // y after quantization

For unsigned types the redundant bits are simply deleted.

Fixed Point Types

112 SystemC 2.0 User’s Guide

SC_RND_INF

This quantization mode also checks to see that the two nearest representable num-
bers are equal distance apart. If not, SC_RND quantization mode is applied. Other-
wise the number is rounded towards plus infinity if positive or minus infinity if
negative. For positive numbers the MSB of the deleted bits is added to the remain-
ing bits. For negative numbers the redundant bits are deleted.

A graph showing this behavior is shown below:

The diagonal line represents the ideal number representation given infinite bits. The
small horizontal lines show the effect of the rounding. Any value within the range
of the line will be converted to the value of the y axis.

SC_RND_INF Examples

Three examples will be shown. The first two use signed numbers and the last one
an unsigned number. The first example shows quantization of a positive number
and the second quantization of a negative number.

3q

2q

q

q 2q 3q

y

x

SystemC 2.0 User’s Guide 113

SC_RND_INF

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND_INF> y;

x = 1.25;
y = x; // quantization occurs here

01.01 (1.25) // value of x after assignment
01.1 (1.5) // value of y after quantization

Value 1.25 is outside the representable range for the result type so quantization will
occur. Since this is a positive number the MSB of the deleted bits is added to the
remaining bits resulting in the value 1.5.

Here’s the same quantization mode with a negative number.

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND_INF> y;

x = -1.25;
y = x; // quantization occurs here

10.11 (-1.25) // value of x after assignment
10.1 (-1.5) // value of y after quantization

Value -1.25 is outside the representable range for the result type so quantization
will occur. Since this is a negative number the redundant bits will be deleted return-
ing the value -1.5.

The last example shows the SC_RND_INF quantization mode with an unsigned
number.

sc_ufixed<14,9> x;
sc_ufixed<13,9,SC_RND_ZERO> y;

x = 38.28125;
y = x; // quantization occurs here

000100110.01001 (38.28125) // x after assignment
000100110.0101 (38.3125) // y after quantization

For unsigned values the MSB of the deleted bits is added to the remaining bits.

Fixed Point Types

114 SystemC 2.0 User’s Guide

SC_RND_CONV

This quantization mode will check to see if the two closest representable numbers
are equal distance apart. If not the SC_RND quantization mode is applied. Other-
wise this mode checks the LSB of the remaining bits. If the LSB is 1 this mode will
round towards plus infinity. If the LSB is 0 this mode will round towards minus
infinity.

This behavior is shown by the graph below:

The diagonal line represents the ideal number representation given infinite bits. The
small horizontal lines show the effect of the rounding. Any value within the range
of the line will be converted to the value of the y axis.

SC_RND_CONV Examples

Four examples will be shown. The first two use signed numbers and the last two
unsigned numbers. The first example shows quantization of a positive number and
the second quantization of a negative number.

sc_fixed<4,2> x;

3q

2q

q

q 2q 3q

y

x

SystemC 2.0 User’s Guide 115

SC_RND_CONV

sc_fixed<3,2,SC_RND_CONV> y;

x = .75;
y = x; // quantization occurs here

00.11 (.75) // value of x after assignment
01.0 (1) // value of y after quantization

Value .75 is outside the representable range for the result type so quantization will
occur. The redundant bits are removed and the result is rounded towards plus infin-
ity because the LSB of the remaining bits is 1.

The next example uses the same types and a negative number.

sc_fixed<4,2> x;
sc_fixed<3,2,SC_RND_CONV> y;

x = -1.25;
y = x; // quantization occurs here

10.11 (-1.25) // value of x after assignment
11.0 (-1) // value of y after quantization

Value -1.25 is outside the representable range for the result type so quantization
will be performed. The LSB of the remaining bits is 1 so the result is rounded
towards plus infinity.

The final examples shows the same quantization mode with an unsigned type.

sc_ufixed<14,9> x;
sc_ufixed<13,9,SC_RND_CONV> y;

x = 38.28125;
y = x; // quantization occurs here

000100110.01001 (38.28125) // LSB 0
000100110.0100 (38.25) // minus infinity

Here is an unsigned type with a different LSB value.

Fixed Point Types

116 SystemC 2.0 User’s Guide

sc_ufixed<14,9> x;
sc_ufixed<13,9,SC_RND_CONV> y;

x = 38.34375;
y = x; // quantization occurs here

000100110.01011 (38.34375) // LSB 1
000100110.0110 (38.375) // plus infinity

SystemC 2.0 User’s Guide 117

SC_TRN

SC_TRN

This quantization mode is the default for fixed point types and will be used if no
other value is specified. The result is always rounded towards minus infinity. The
redundant bits are always deleted no matter whether the number is positive or nega-
tive. The result value is the first representable number lower than the original value.

This is shown by the graph below:

The diagonal line represents the ideal number representation given infinite bits. The
small horizontal lines show the effect of the rounding. Any value within the range
of the line will be converted to the value of the y axis.

SC_TRN Examples

The first two examples use an arithmetic precision of sc_fixed<4,2> with a result
value of sc_fixed<3,2,SC_TRN>. Notice that the specification of SC_TRN is not
required, as it is the default, but makes it quite clear which quantization mode is
being used. The first example shows a positive number.

sc_fixed<4,2> x;
sc_fixed<3,2,SC_TRN> y;

3q

2q

q

q 2q 3q x

y

Fixed Point Types

118 SystemC 2.0 User’s Guide

x = 1.25;
y = x; // quantization occurs here

01.01 (1.25) // value of x after assignment
01.0 (1) // value of y after quantization

Value 1.25 is outside the representable range for the result type so quantization will
be performed. The quantization simply truncates the redundant bits before assign-
ment. In this case the LSB is removed to create the necessary result. The next
example uses a negative number.

sc_fixed<4,2> x;
sc_fixed<3,2,SC_TRN> y;

x = -1.25;
y = x; // quantization occurs here

10.11 (-1.25) // value of x after assignment
10.1 (-1.5) // value of y after quantization

Value -1.25 is outside the representable range for the result type so quantization
will occur. The LSB is simply removed creating the value -1.5.

The next example shows the same quantization mode with an unsigned value.

sc_ufixed<16,8> x;
sc_ufixed<12,8,SC_TRN> y;

x = 38.30859375;
y = x; // quantization occurs here

00100110.01001111 (38.30859375)
00100110.0100 (38.25)

The 4 LSBs are simply removed to create the new value.

SystemC 2.0 User’s Guide 119

SC_TRN_ZERO

SC_TRN_ZERO

For positive numbers this quantization mode is exactly the same as SC_TRN. For
negative numbers the result is rounded towards zero. The result is the first repre-
sentable number lower in absolute value than the starting value. This is accom-
plished by deleting the redundant bits on the right side and adding the sign bit to the
LSBs of the remaining bits. However this only occurs if at least one of the deleted
bits is nonzero.

A graph showing this quantization mode is shown below:

The diagonal line represents the ideal number representation given infinite bits. The
small horizontal lines show the effect of the rounding. Any value within the range
of the line will be converted to the value of the y axis.

3q

2q

q

q 2q 3q

y

x

Fixed Point Types

120 SystemC 2.0 User’s Guide

SC_TRN_ZERO Examples

Two examples will be shown. The first one uses a signed number and the last one
an unsigned number. The first example shows quantization of a negative number
and the second quantization of an unsigned number.

sc_fixed<4,2> x;
sc_fixed<3,2,SC_TRN_ZERO> y;

x = -1.25;
y = x; // quantization occurs here

10.11 (-1.25) // value of x after assignment
11.0 (-1) // value of y after quantization

Value -1.25 is outside the range of values of the result type so quantization will be
performed. The LSB of the starting value is removed and the sign bit added to the
LSBs. This occurs because the starting number was negative. If the starting value
had been positive the result would have been a truncation of the redundant bits.

Here is another example using an unsigned type.

sc_ufixed<15,8> x;
sc_ufixed<12,8,SC_TRN_ZERO> y;

x = 38.30859375;
y = x; // quantization occurs here

00100110.0100111 (38.30859375)
00100110.0100 (38.25)

This quantization mode for unsigned works the same as truncation because there
are no negative values with unsigned numbers.

SystemC 2.0 User’s Guide 121

Overflow Modes

Overflow Modes

In this section we will examine what happens when the result of an operation gener-
ates more bits on the MSB side of a number than are available for representation.
Overflow occurs when the result of an operation is too large or too small for the
available bit range. Overflow modes within the fixed point types of SystemC give
the designer high level control over the result of an overflow condition.

Overflow modes are specified by the o_mode and n_bits parameters to a fixed point
type. The supported overflow modes are listed in the table shown below:

MIN and MAX

Throughout the discussion of overflow modes we will be using the terms MIN and
MAX. MIN is the smallest negative number that can be represented and MAX is
the largest positive number that can be represented with the available bit width.

The next few sections will discuss each of the overflow modes and their effect on
the result of a cast operation.

Overflow Mode Name

Saturation SC_SAT

Saturation to zero SC_SAT_ZERO

Symmetrical saturation SC_SAT_SYM

Wrap-around) SC_WRAP

Sign magnitude wrap-around SC_WRAP_SM

Fixed Point Types

122 SystemC 2.0 User’s Guide

SC_SAT

This overflow mode will convert the specified value to MAX for an overflow or
MIN for an underflow condition. The maximum and minimum values will be deter-
mined from the number of bits available. Value MAX will then be assigned to the
result value for a positive overflow and MIN for a negative overflow condition.

A graph showing the behavior for a 3 bit type is shown below:

The diagonal line represents the ideal value if infinite bits are available for repre-
sentation. The dots represent the values of the result. The X axis is the original
value and the Y axis is the result. From this graph we can see that MAX = 3 and
MIN = -4 for a 3 bit type.

SC_SAT Examples

Assume that the arithmetic precision is sc_fixed<4,4> and the result is
sc_fixed<3,3,SC_TRN,SC_SAT>. Then the example below will behave as shown.

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_SAT> y;

y 5

4

3

2

1
1 2 3 4 5 6

-1

-2

-3

-4

-5

-6 -5 -4 -3 -2 -1

x

SystemC 2.0 User’s Guide 123

SC_SAT

x = 6;
y = x; // overflow handling occurs here

0110 (6) // value of x after assignment
 011 (3) // value of y after overflow handling

An overflow condition exists because 6 is outside the representation range for a
signed 3 bit type. Therefore the value MAX (3) is assigned to the result. Below is
the same types using a negative value.

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_SAT> y;

x = -5;
y = x; // overflow handling occurs here

1011 (-5) // value of x after assignment
 100 (-4) // value of y after overflow handling

Value -5 is outside the range for a 3 bit signed type. The value MIN (-4) is assigned
to the result.

For unsigned types the MAX value is always assigned as shown below:

sc_ufixed<5,5> x;
sc_ufixed<3,3,SC_TRN,SC_SAT> y;

x = 14;
y = x; // overflow processing occurs here

01110 (14) // value of x after assignment
 111 (7) // value of y after overflow handling

Value 14 is outside the range of 3 bits unsigned, so MAX (7) is assigned to the
result.

Fixed Point Types

124 SystemC 2.0 User’s Guide

SC_SAT_ZERO

This overflow mode will set the result to 0 for any input value that is outside the
representable range of the fixed point type. If the result value is greater than MAX
or smaller than MIN the result will be 0.

This is shown in the graph below:

The diagonal line represents the ideal value if infinite bits are available for repre-
sentation. The dots represent the values of the result. The X axis is the original
value and the Y axis is the result. From this graph we can see that MAX = 3 and
MIN = -4 for a 3 bit type. Any value above MAX or below MIN is set to 0.

SC_SAT-ZERO Examples

For these examples the arithmetic precision used is sc_fixed<4,4> and the result
type is sc_fixed<3,3,SC_TRN,SC_SAT_ZERO>.

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_SAT_ZERO> y;

y

x

5

4

3

2

1

-1

-2

-3

-4

-5

1 2 3 4 5 6-6 -5 -4 -3 -2 -1

SystemC 2.0 User’s Guide 125

SC_SAT_ZERO

x = 6;
y = x; // overflow handling occurs here

0110 (6) // value of x after assignment
 000 (0) // value of y after overflow handling

Value 6 is outside the representable range for the 3 bit result type specified so over-
flow processing will occur and return the value 0. Here is an example of a negative
value.

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_SAT_ZERO> y;

x = -5;
y = x; // overflow handling occurs here

1011 (-5) // value of x after assignment
 000 (0) // value of y after overflow handling

Value -5 is outside the representable range for the 3 bit type specified so the return
value will be saturated to 0. This last example uses an unsigned type.

sc_ufixed<5,5> x;
sc_ufixed<3,3,SC_TRN,SC_SAT_ZERO> y;

x = 14;
y = x; // overflow processing occurs here

01110 (14) // value of x after assignment
 000 (0) // value of y after overflow handling

Value 14 is outside the range of 3 bits unsigned so overflow processing will occur
and return the value 0.

Fixed Point Types

126 SystemC 2.0 User’s Guide

SC_SAT_SYM

In twos-complement notation one more negative value than positive value can be
represented. When using SC_SAT overflow mode the absolute value of MIN is one
more than MAX. Sometimes it is desirable to have the MIN and MAX value sym-
metrical around zero. The SC_SAT_SYM overflow mode will perform this func-
tion as required. Positive overflow will generate MAX and negative overflow will
generate -MAX for signed numbers.

A graph showing this behavior is shown below:

The diagonal line represents the ideal value if infinite bits are available for repre-
sentation. The dots represent the values of the result. The X axis is the original
value and the Y axis is the result. From this graph we can see that MAX = 3 and
MIN = -4 for a 3 bit type. An value above MAX is set to MAX for positive num-
bers. For negative numbers any value smaller than -MAX is set to -MAX.

SC_SAT_SYM Examples

For the next two examples arithmetic precision is specified as sc_fixed<4,4> and
the result precision is sc_fixed<3,3,SC_TRN,SC_SAT_SYM>.

y 5

4

3

2

1
1 2 3 4 5 6

-1

-2

-3

-4

-5

-6 -5 -4 -3 -2 -1

x

SystemC 2.0 User’s Guide 127

SC_SAT_SYM

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_SAT_SYM> y;

x = 6;
y = x; // overflow handling occurs here

0110 (6) // value of x after assignment
 011 (3) // value of y after overflow handling

Value 6 is outside the range of values for a 3 bit signed value so the result is satu-
rated to MAX (3). Here is a negative number example.

1011 (-5)
 101 (-3)

Value -5 is outside the representable range for 3 bits so overflow processing will
occur. The overflow mode will return -MAX (-3) as the result.

Here is an example using an unsigned type.

sc_ufixed<5,5> x;
sc_ufixed<3,3,SC_TRN,SC_SAT_SYM> y;

x = 14;
y = x; // overflow processing occurs here

01110 (14) // value of x after assignment
 111 (7) // value of y after overflow handling

Value 14 is outside the range for a 3 bit unsigned type so overflow mode will return
MAX (7) as the result.

Fixed Point Types

128 SystemC 2.0 User’s Guide

SC_WRAP

With the wrap overflow modes the value of an arithmetic operand will wrap around
from MAX to MIN as MAX is reached. The unsigned case is similar to the way a
counter would work in hardware. When the MAX value is reached the counter
would wrap around to 0 again.

There are two different cases within the SC_WRAP overflow mode. The first is
with the n_bits parameter set to 0 or having a default value of 0. The second is
when the n_bits parameter is a nonzero value.

SC_WRAP, n_bits = 0

The first case is the default overflow mode. With this overflow mode any MSB bits
outside the range of the target type are deleted. The graph below shows the behav-
ior of this overflow mode.

The diagonal line represents the ideal value if infinite bits are available for repre-
sentation. The dots represent the values of the result. The X axis is the starting
value and the Y axis is the result. From this graph we can see that MAX = 3 and

y

x

5

4

3

2

1

-1

-2

-3

-4

-5

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 6 7 8 95

SystemC 2.0 User’s Guide 129

SC_WRAP, n_bits = 0

MIN = -4 for a 3 bit type. Notice that as the input value approaches the MAX value
the next value is the MIN value. Also the next value smaller than MIN is MAX.

SC_WRAP, n_bits = 0 Examples

The next two examples assume the original value is a signed 4 bit type and the
result is a signed 3 bit type. Here is a positive number example.

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_WRAP> y;

x = 4;
y = x; // overflow handling occurs here

0100 (4)
 100 (-4)

Value 4 is outside the representable range for 3 bits. The MSB is deleted resulting
in the value -4. Here is a negative value example.

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_WRAP> y;

x = -5;
y = x; // overflow handling occurs here

1011 (-5)
 011 (3)

Again -5 is outside the representable range for a 3 bit number, so the MSB is
deleted resulting in the positive value 3.

Here is an unsigned type example.

sc_ufixed<5,5> x;
sc_ufixed<3,3,SC_TRN,SC_WRAP> y;

x = 27;
y = x; // overflow processing occurs here

11011 (27)
 011 (3)

Fixed Point Types

130 SystemC 2.0 User’s Guide

The two MSBs are deleted to fit the result into a 3 bit value.

SC_WRAP, n_bits > 0

When n_bits is greater than 0 the designer is specifying that n_bit MSB bits are to
be saturated or set to 1. The sign bit is retained so that positive numbers remain pos-
itive and negative numbers remain negative. The bits that are not saturated are sim-
ply copied from the original value to the result value.

A graph showing this behavior for 3 bits with n_bits = 1 is shown below:

The diagonal line represents the ideal value if infinite bits are available for repre-
sentation. The dots represent the values of the result. The X axis is the starting
value and the Y axis is the result. From this graph we can see that MAX = 3 and
MIN = -4 for a 3 bit type. Values outside the positive representable range remain
positive. Values outside the negative representable range remain negative. Notice
that positive numbers wrap around to 0 while negative values wrap around to -1.

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 6 7 8 95

5

4

3

2

1

-1

-2

-3

-4

-5

y

SystemC 2.0 User’s Guide 131

SC_WRAP, n_bits > 0

SC_WRAP, n_bits>0 Examples

The original type for the next 2 examples is a signed 4 bit type. The result type is a
signed 3 bit type. Parameter n_bits is set to 1 which will saturate 1 MSB bit.

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_WRAP,1> y;

x = 5;
y = x; // overflow handling occurs here

0101 (5) // value of x after assignment
 001 (1) // value of y after overflow handling

Value 5 is outside the representable range of 3 bits. Overflow will occur and the
result wrapped to 1, still a positive number. The next example shows a negative
number.

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_WRAP,1> y;

x = -5;
y = x; // overflow handling occurs here

1011 (-5) // value of x after assignment
 111 (-1) // vlaue of y after overflow handling

Value -5 is outside the range for 3 bits so overflow will occur. The sign bit will be
retained and one bit saturated so the result will be -1.

The next example uses an unsigned type. This time n_bits is specified as 3.

sc_ufixed<7,7> x;
sc_ufixed<5,5,SC_TRN,SC_WRAP,3> y;

x = 50;
y = x; // overflow processing occurs here

0110010 (50) // value of x after assignment
 11110 (30) // value of y after overflow handling

The 3 MSB bits are saturated to 1 as specified by n_bits. The other bits are copied
starting from the LSB side of the starting value to the result value.

Fixed Point Types

132 SystemC 2.0 User’s Guide

SC_WRAP_SM

The SC_WRAP_SM overflow mode uses sign magnitude wrapping. This overflow
mode behaves in two different styles depending on the value of parameter n_bits.
When n_bits is 0 no bits are saturated. With n_bits greater than 0, n_bits MSB bits
are saturated to 1.

SC_WRAP_SM, n_bits = 0

This mode will first delete any MSB bits that are outside the result word length.
The sign bit of the result is set to the value of the least significant deleted bit. If the
most significant remaining bit is different from the original MSB then all the
remaining bits are inverted. If the MSBs are the same the other bits are copied from
the original value to the result value. A graph showing the result of this overflow
mode is shown below:

The diagonal line represents the ideal value if infinite bits are available for repre-
sentation. The dots represent the values of the result. The X axis is the starting
value and the Y axis is the result. From this graph we can see that MAX = 3 and
MIN = -4 for a 3 bit type. As the value of x increases, the value of y increases to

y

x

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 6 7 8 95

5

4

3

2

1

-1

-2

-3

-4

-5

SystemC 2.0 User’s Guide 133

SC_WRAP_SM, n_bits = 0

MAX and then slowly starts to decrease until MIN is reached. The result is a saw-
tooth like waveform.

SC_WRAP_SM, n_bits = 0 Examples

For the next few examples the starting value is a four bit representation of the value
4. If the target for this value is a 3 bit signed type the value 4 will overflow the type
and overflow processing will occur. Here is the starting value:

sc_fixed<4,4> x;
sc_fixed<3,3,SC_TRN,SC_WRAP_SM> y;

x = 4;
y = x; // overflow processing occurs here

0100 (4)

First the MSB is deleted to produce a 3 bit result.

 100 (-4)

Next the new sign bit is calculated. The new sign bit is the least significant bit of
the deleted bits. For this example only 1 bit was deleted and its value is 0. Therefore
the new sign bit is 0. Now the sign bit of the new value (1) is compared with the
calculated sign bit (0). If these bits are different, then the rest of the bits will be
inverted. for this example the sign bits are different and the other bits will be
inverted as shown below:

 011 (3)

The sign magnitude wrap values with n_bits equal to 0 for 3 bit numbers are shown
by the table below:

Original
value in
Decimal

Result
value in
Binary

8 111

7 000

6 001

5 010

Fixed Point Types

134 SystemC 2.0 User’s Guide

This table shows what happens when the original values in the left cell of the table
are converted to result values in the table cells on the right.Notice that the original
values are listed in decimal to show greater range.

SC_WRAP_SM, n_bits > 0

The second overflow behavior within the SC_WRAP_SM overflow mode is the
case when n_bits is greater than 0. A sign magnitude wrap will still be performed
but now n_bits MSB bits will be saturated. In fact the first n_bits MSB bits on the
MSB side of the result number will are saturated to MAX for positive numbers and
to MIN for negative numbers. This means that all of the bits except for the sign bit
will be saturated to a 1 for positive numbers and all of the bits will be saturated to 1
for negative numbers. Positive number remain positive and negative numbers
remain negative.

When n_bits is equal to 1, one bit to the right of the sign bit is saturated and the
remaining bits are copied. These remaining bits are xor-ed with the original and
new value of the sign bit of the result number. If n_bits is greater than 1, the unsat-

4 011

3 011

2 010

1 001

0 000

-1 111

-2 110

-3 101

-4 100

-5 100

-6 101

-7 110

Original
value in
Decimal

Result
value in
Binary

SystemC 2.0 User’s Guide 135

SC_WRAP_SM, n_bits = 1

urated bits are xor-ed with the original value of the least significant saturated bit
and the inverse value of the original sign bit.

SC_WRAP_SM, n_bits = 3 Examples

For this example the original number is a 9 bit number and the result will be 5 bits.
Parameter n_bits is equal to 3. This will cause the first 3 MSBs of the new value to
be saturated to MAX or MIN. Here’s the starting value.

sc_ufixed<9,9> x;
sc_ufixed<5,5,SC_TRN,SC_WRAP_SM,3> y;
x = 234;
y = x; // overflow processing occurs here

011101010 (234)

This value is first truncated to 5 bits.

 01010 (10)

The original sign bit (0) is copied to the MSB of the new value. Next bits 4, 3, and
2 are converted to MAX because n_bits is equal to 3. The sign bit is not saturated to
1, because the sign does not change in this mode.

 01110 (14)

The original value of the bit at position 2 (starting with 0 at right) was 0. The
remaining bits at the LSB side (10) are xor-ed with this value and the inverse value
of the original sign bit (01). The final result is shown below.

 01101 (13)

SC_WRAP_SM, n_bits = 1

This overflow mode behaves similarly to the mode where n_bits equals 0 except
that positive numbers stay positive and negative number stay negative. The first bit
on the MSB side of the new value will receive the sign bit of the original value. The
other bits are copied and xor-ed with the original and the new value of the result
sign bit. This behavior is shown in the graph below:

Fixed Point Types

136 SystemC 2.0 User’s Guide

The diagonal line represents the ideal value if infinite bits are available for repre-
sentation. The dots represent the values of the result. The X axis is the starting
value and the Y axis is the result. From this graph we can see that MAX = 3 and
MIN = -4 for a 3 bit type. Notice that while the graph looks somewhat like a saw-
tooth waveform, positive numbers do not dip below 0 and negative numbers do not
cross -1.

SC_WRAP_SM, n_bits = 1 Example

This example will cast a 5 bit representation of the number 12 to a 3 bit number
using the SC_WRAP_SM overflow mode with n_bits equal to 1. Here’s the origi-
nal value.

sc_ufixed<5,5> x;
sc_ufixed<3,3,SC_TRN,SC_WRAP_SM,1> y;

x = 12;
y = x; // overflow processing occurs here

01100 (12)

5

4

3

2

1

-1

-2

-3

-4

-5

9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 6 7 8 95

y

x

SystemC 2.0 User’s Guide 137

SC_WRAP_SM, n_bits = 1

This value is first truncated to 3 bits.

 100 (4)

The original sign bit is copied to the MSB position.

 000 (0)

The two remaining LSB bits are xor-ed with the original sign bit (1) and the new
sign bit (0).

 011 (3)

This algorithm can be applied to any number that cannot be exactly represented by
3 bits.

The table below summarizes the overflow behavior for 3 bits.

Original
value in
Decimal

Result
value in
Binary

9 001

8 000

7 000

6 001

5 010

4 011

3 011

2 010

1 001

0 000

-1 111

-2 110

-3 101

-4 100

-5 100

-6 101

Fixed Point Types

138 SystemC 2.0 User’s Guide

-7 110

-8 111

-9 111

Original
value in
Decimal

Result
value in
Binary

SystemC 2.0 User’s Guide 139

Fast Fixed Point Types

Fast Fixed Point Types

The standard fixed point types described previously use arbitrary precision in cal-
culations. This adds extra overhead that in most cases might not be needed. Sys-
temC provides limited precision fixed point types to speed simulation when limited
precision is all that’s required.

With standard fixed point types the mantissa can be virtually any size. With limited
precision fixed point types the mantissa is limited to 53 bits. Limited precision
fixed point types are implemented with double precision floating point values. The
range of representation of limited precision fixed point types is limited by the size
of the double precision floating point value representation.

The 4 limited precision fixed point types are listed below:

• sc_fixed_fast

• sc_ufixed_fast

• sc_fix_fast

• sc_ufix_fast

The limited precision types have exactly the same interface as the arbitrary preci-
sion fixed point types. The same parameter names, types, and order are used to
form both kinds of fixed point types. Also limited precision and arbitrary precision
types can be mixed freely.

To get bit-true behavior for a design follow these guidelines:

• Make sure that the result of any operation with fast fixed point types does not
generate a word length greater than 53 bits.

• When adding or subtracting two operands the result word length will be 1 more
than the maximum aligned word length.

• When multiplying two operands the resulting bit length will be the sum of the
word length of each operand.

Limited precision fixed point types should be used whenever possible to achieve
the best simulation performance. Apply the guidelines from above to make sure
that the limited precision types will be appropriate for your design.

Fixed Point Types

140 SystemC 2.0 User’s Guide

Simple Examples

Here are some simple examples to show how the fixed point types will be used. The
first example is a simple adder with floating point inputs and output types.

// fxpadder.h

#include "systemc.h"

float adder(float a, float b)
{
 sc_fixed_fast<4,2,SC_RND,SC_WRAP> Inputa = a;
 sc_fixed_fast<6,3,SC_RND,SC_WRAP> Inputb = b;

 sc_fixed_fast<7,4,SC_RND,SC_WRAP> Output;

 Output = (Inputa + Inputb);
 return (Output);
}

This example is a simple adder with two floating point input argument and 1 float-
ing point output return value. The declarations of Inputa and Inputb declare fixed
point input types and conversions from floating point types. The declaration of Out-
put specifies a fast fixed point type whose bit width is one greater than the biggest
input operand. The assignment to variable Output performs the add operation and
the return statement will assign the new result to the function output value. When
the assignment is performed the fast fixed point type is converted back to a float.

This example allows the designer to easily change the bit widths, overflow modes,
and quantization modes to get the desired adder behavior. The designer can simu-
late the behavior before implementation to see if the adder is functionally what is
needed for the end product.

Type sc_fxtype_params

Type sc_fxtype_params is used to configure the parameters of types sc_fix_fast,
sc_ufix_fast, sc_fix, and sc_ufix. Remember these types do not need to have their
parameters determined at compile time as do types sc_fixed, sc_ufixed,
sc_fixed_fast, and sc_ufixed_fast. Therefore to set the parameters for these types

SystemC 2.0 User’s Guide 141

Type sc_fxtype_params

declare an object of type sc_fxtype_params, initialize the parameter values as
desired, and pass the sc_fxtype_params object as an argument to the sc_fix_fast,
etc. declarations.

The sc_fxtype_params object has the same arguments passed to an object of type
sc_fixed_fast. These include:

• wl - word length

• iwl - integer word length

• q_mode - quantization mode

• o_mode - overflow mode

• n_bits - saturated bits

These arguments are exactly as described in the last few sections. For instance a
sc_fxtype_params object could be created as follows:

sc_fxtype_params small_add_params(8, 4, SC_RND,
SC_SAT);

This creates an object called small_add_params that contains the following param-
eter values:

• wl = 8

• iwl = 4

• q_mode = SC_RND

• o_mode = SC_SAT

• n_bits = 0 (default)

Any combination of arguments are allowed, but the order cannot be changed. A
variable of type sc_fxtype_params can be initialized by another variable of type
sc_fxtype_params. One variable of type sc_fxtype_params can also be assigned to
another.

Individual argument values can be read and written using methods with the same
name as the arguments shown above. Here’s an example:

sc_fxtype_params small_add_params(8, 4, SC_RND,
SC_SAT);

x = small_add_params.wl(); // x = 8

Fixed Point Types

142 SystemC 2.0 User’s Guide

small_add_params.iwl() = 4; // sets iwl to 4

The first statement will create a sc_fxtype_params object with wl = 8, iwl = 4,
q_mode = SC_RND, and o_mode = SC_SAT. The second statement will read the
value of wl, and the third statement will set the value of iwl.

Type sc_fxtype_context

Type sc_fxtype_context is used to configure the default behavior of fixed point
types. This type will set the default values for parameters to declaration of types
sc_fix_fast, sc_ufix_fast, sc_fix, and sc_ufix. This type allows the designer to cre-
ate a set of default parameter values and define when these values are used.

When a new sc_fxtype_context object is created the values specified as arguments
become the new default values. The old default values are stored. When the new
context goes out of scope the old default values are restored.

An example using both the sc_fxtype_params and sc_fxtype_context is shown
below:

// fxpadder2.h
#include "systemc.h"

sc_fxtype_params myparams(SC_RND, SC_SAT);
sc_fxtype_context mycontext(myparams);

sc_fix_fast adder(sc_fix_fast a, sc_fix_fast b)
{
 sc_fix_fast Output(a.wl() + 1, a.iwl() + 1);
 // specify output wl and iwl to be one larger
 // than wl and iwl of a

 Output = a + b;
 return(Output);
}

This example uses the sc_fix_fast type in an adder. The first two declarations setup
the quantization mode and overflow mode used in the description. The first state-

SystemC 2.0 User’s Guide 143

Type sc_fxtype_context

ment will declare an sc_fxtype_params object (myparams) to specify the fixed
point default parameter values. Notice that the wl and iwl parameters were not
specified so the current default parameter values will be used.

The second statement creates a new sc_fxtype_context object and initializes the
context with the default values of the sc_fxtype_params object created earlier. This
context will now be active for all fixed point objects created in the scope of this
declaration.

The declaration of adder specifies two input parameters and the output as
sc_fix_fast types. When these types are declared they will pick up the overflow
mode and quantization mode setup in context mycontext by default.

The declaration of Output specifies that the word length and integer word length
will be one longer than the word length and integer word length of input a. Notice
the use of methods wl() and iwl() to return the current values.

The last two statements will add a and b, assign the result to Output, and return the
result. If any quantization or overflow handling is needed it will be performed when
the assignment to Output takes place. The last statement assigns Output to the
return value of the function. If needed more quantization and overflow handling
could also occur when this statement executes.

Complex Context Example

Contexts have the ability to be turned on and off. This can be very useful when
using a number of different default values throughout your design. To declare a
context but don’t use it right away use the SC_LATER argument. This is shown
below:

sc_fxtype_params param1(12,3);
// not specified arguments are coming from
// the actual context.

sc_fxtype_params param2(32,3,SC_RND,SC_SAT);
sc_fxtype_params param3(16,16,SC_TRN,SC_SAT_ZERO);

Fixed Point Types

144 SystemC 2.0 User’s Guide

First three sets of sc_fxtype_params objects have been created to hold the different
values for the different contexts.

{

 sc_fxtype_context c_1(param1,SC_LATER);
 /* only declaration of a context */
 sc_fxtype_context c_2(param2);
 /* declaration of a context and the
 parameter specified in param2 are
 the new default one */
 sc_fxtype_context c_3(param3, SC_LATER);
 /* only declaration of a context */

Next three contexts are created using each of the parameter sets created. The
SC_LATER argument for parameter sets param1 and param3 mean that these
parameter sets will not be currently active. These sets can be activated later by
using a begin() method on variables c_1 and c_3. This will be shown below:

 sc_fix a;
 // is equivalent to sc_fix(32,3,SC_RND,SC_SAT) a;
 // because param2 is the default parameter set
 c_1.begin();
 // parameters specified in param1 are from now
 // on the new default ones. This is because param1 has
 // only word length and integer word length
 // speciifed, the quantization and overflow
 // modes are the built-in ones (SC_TRN, SC_WRAP)

 sc_fix b;
 // is equivalent to sc_fix(12,3,SC_TRN, SC_WRAP) b;
 // because parameter set 1 is now active

 c_3.begin();
 // This will activate parameter set param3 making
 // the default

 sc_fix c;
 // This declaration will use parameter set param3
 // just activated so this declaration is equivalent
 // to sc_fix(16,16,SC_TRN,SC_SAT_ZERO) c;

SystemC 2.0 User’s Guide 145

Type sc_fxtype_context

 sc_fixed<13,5> zz;
 // This declaration is equivalent to sc_fixed<13,5,
 // SC_TRN, SC_WRAP> zz. The context has no influence
 // for fixed point types sc_fixed and sc_ufixed, the
 // built-in defaults are always used.

 c_3.end();
 // This will turn off the c_3 context so paramter set
 // param3 is no longer valid. Parameter set param1
 // will now be activated again.

 sc_fix d;
 // Parameter set param1 is used so this declaration is
 // equivalent to sc_fix(12,3,SC_TRN, SC_WRAP) d;

 c_1.end();
 // This statement will turn off the c_1 context so
 // parameter set param2 will be active again.

 sc_fix e;
 // Parameter set param2 is used so this declaration is
 // equivalent to sc_fix(32,3,SC_RND,SC_SAT) e;

 c_2.end();
 // This statement will turn off the c_2 context so
 // the built-in default values will now be used.

 sc_fix f;
 // This declaration uses the built-in default values
 // so this declaration is equivalent to
 // sc_fix(32,32,SC_TRN, SC_WRAP) f;

Fixed Point Types

146 SystemC 2.0 User’s Guide

Operators

There are a number of operators defined for fixed point types, as shown in the table
below:

All of the normal arithmetic and equality operators are supported including an
arithmetic shift left (<<) and arithmetic shift right (>>). The difference between the
arithmetic shifts and the standard bit shifts are that the arithmetic shifts preserve the
sign bit.

A small set of bitwise operators are defined for fixed point types. These operators
are defined to work exclusively on signed or unsigned operands. No mixing of
signed and unsigned operands is allowed. Also no mixing with any other type is
allowed.

For the ~(not) operator the return type is the type of the operand. The bits in the
two’s complement mantissa are inverted to get the mantissa of the result. For binary
operators the type of the result is the maximum aligned type (the longest width) of
the two operands. The two operands are aligned by the binary point. The maximum
word length and maximum fractional word length are taken. Both operands are
converted to this type before performing the bitwise and, or, or xor operation.

Bit Selection

As with other types that have already been discussed, bit selection is performed
with []. The return type of this operation is type sc_fxnum_bitref which behaves
like sc_bit. Bit selection can be used for reading and writing a single bit of a fixed
point type.

Operator class Operators in class

Bitwise ~ & ^ |

Arithmetic * / + - << >> ++ --

Equality == !=

Relational < <= > >=

Assignment = *= /= += -= <<= >>= &= ^= |=

SystemC 2.0 User’s Guide 147

Part Selection

Part Selection

Part selection is performed with the range() method as with other types. The return
type of the part selection is sc_fxnum_subref which behaves like sc_bv. Part selec-
tion can be performed on both sides of an assignment statement allowing both read-
ing and writing of a part.

Type Casting

Type casting is very important for fixed point types. Type casting is performed dur-
ing initialization (if required) and assignment. Type casting will first use quantiza-
tion to reduce then number of bits of the LSB side of the operand. Next overflow
handling is performed to reduce the number of bits at the MSB side of the operand.
Sign extension and zero fill are used in cases where the operand is not reduced but
extended.

Type casting can be configured to be on or off. The default value of the cast switch
is obtained from the current sc_fxtype_context object in use. Casting can be turned
on or off through an argument during declaration, or by modifying or creating a
new context. Here’s an example:

sc_ufixed<16,16> d(SC_OFF);

This declaration specifies d as an unsigned 16 bit fixed point type in which casting
is turned off. Values for the cast switch are SC_OFF and SC_ON. The default value
is SC_ON.

Turning casting off will turn off fixed point handling of the operand. The operand
will be treated as a large float value. The bit accurate behavior of the operand will
not be available when casting is turned off.

Useful State Information

There are some useful methods to query the state of a fixed point object. These
methods return a boolean value depending on the value of a fixed point object. The
following methods are supported:

Fixed Point Types

148 SystemC 2.0 User’s Guide

• is_neg() - returns true if object has a negative value, otherwise returns false.

• is_zero() - returns true if object is zero value, otherwise returns false.

• overflow_flag() - returns true if last write to this object caused overflow to
occur. Returns false if no overflow.

• quantization_flag() - returns true if last write to this object caused quantization
to occur. Returns false if no quantization.

To use one of the methods append the method name to the variable name with a "."
as shown below:

if (myvariable.is_zero()) { // do something

In this example if myvariable is 0 the if statement will be true.

Converting Fixed Point Types to Strings

The value of a fixed point type can be converted to a character string with the
to_string() method. This method takes two arguments. The first argument specifies
the number representation of the result and the second specifies fixed or scientific
format. The number representation argument is specified by one of the arguments
from the table below:

Value Description Prefix

SC_DEC decimal, sign magnitude

SC_BIN binary, two’s complement 0b

SC_BIN_US binary, unsigned 0bus

SC_BIN_SM binary, sign magnitude 0bsm

SC_OCT octal, two’s complement 0o

SC_OCT_US octal, unsigned 0ous

SC_OCT_SM octal, sign magnitude 0osm

SC_HEX hexadecimal, two’s complement 0x

SC_HEX_US hexadecimal, unsigned 0xus

SystemC 2.0 User’s Guide 149

Arrays of Fixed Point Types

To specify how a number is represented use the following syntax:

varname.to_string(number representation, format);

Both arguments are optional. The default number representation is SC_DEC. The
second argument (format) can be SC_F for fixed notation and SC_E for scientific
notation. The default is SC_F for types sc_fixed, sc_ufixed, sc_fix and sc_ufix and
the corresponding fast versions.

Arrays of Fixed Point Types

When declaring a single fixed point object, each object can receive constructor
arguments. For arrays of fixed point types, this is not the case. For arrays the
default constructor will be used for each element. The constructor arguments are
passed through the current context in use.

For sc_fix, sc_ufix and the corresponding fast types setup a context before the array
declaration as shown below:

sc_fxtype_context c1(16, 1, SC_RND_CONV, SC_SAT_SYM);
sc_fix a[10];

This will create an array of 10 fixed point types that are 16 bits long, have 1 integer
point, use SC_RND_CONV for quantization, and SC_SAT_SYM for overflow.

For sc_fixed, sc_ufixed and the corresponding fast types the arguments are passed
as previously described. This is shown below:

sc_fixed<32,32> a[10];
sc_ufixed_fast<16,1,SC_RND_CONV,SC_SAT_SYM> b[4];

The first statement creates an array of 10 signed fixed point types 32 bits long with
32 bits left of the binary point. The second statement creates an array of 4 unsigned
fixed point types 16 bits long, 1 bit to the left of the binary point, that uses the
SC_RND_CONV quantization mode and the SC_SAT_SYM overflow mode.

SC_HEX_SM hexadecimal, sign magnitude 0xsm

SC_CSD canonical signed digit 0csd

Fixed Point Types

150 SystemC 2.0 User’s Guide

For the sc_fixed and sc_ufixed types and the corresponding fast types the cast
switch must be setup properly in the context as it cannot be passed as an argument.

Larger Example

This example is a 17 coefficient FIR filter. This function takes one argument named
Input of type sc_fixed<4,2,SC_RND, SC_WRAP> and returns a value of type
sc_fixed<32,3,SC_RND,SC_WRAP>. The input value and the last 16 input values
are successively multiplied by the 17 input coefficents. The input value is then
stored in the state array to be used as one of the 16 values in the next calculation. As
a new value is received the values in the state array are shifted to make room for the
new value.

#include "systemc.h"

sc_fixed<32,3,SC_RND,SC_WRAP>
fir_fx(sc_fixed<4,2,SC_RND,SC_WRAP> Input)
{
 const int NumberOfCoefficients = 17;
 static sc_fixed<4,2,SC_RND,SC_WRAP>
 state[NumberOfCoefficients-1];

 static sc_fixed<32,0,SC_RND,SC_WRAP>
 coeff[NumberOfCoefficients] = {
 1.05162989348173e-02,
 3.84160084649920e-03,
 -1.86606831848621e-02,
 -3.90706136822701e-02,
 -2.64619290828705e-02,
 3.91649864614010e-02,
 1.44576489925385e-01,
 2.5e-01,
 2.84146755933762e-01,
 2.43584483861923e-01,
 1.44576489925385e-01,
 3.91649864614010e-02,
 -2.64619290828705e-02,
 -3.90706136822701e-02,
 -1.86606831848621e-02,
 3.84160084649920e-03,

1.05162989348173e-02};

SystemC 2.0 User’s Guide 151

Arrays of Fixed Point Types

 sc_fixed<32,3,SC_RND,SC_WRAP> Output;
 sc_fixed<4,2,SC_RND,SC_WRAP> * pstate;
 sc_fixed<32,0,SC_RND,SC_WRAP> * pcoeff;
 sc_fixed<32,3,SC_RND,SC_WRAP> sum;
 int i;

 /* FIR filter output */
 pcoeff = &coeff[0];
 pstate = &state[0];
 sum = ((*pcoeff++) * (Input));
 for (i = 0;i < (NumberOfCoefficients - 1);i++)
 {
 sum = (sum + ((*pcoeff++) * (*pstate++)));
 }
 Output = sum;
 /* shift state */
 pstate = &state[(NumberOfCoefficients - 2)];
 pcoeff = (pstate - 1);
 for (i = 0; i < (NumberOfCoefficients - 2); i++)
 {
 *pstate-- = *pcoeff-- ;
 }
 *pstate = Input;
 return(Output);
}

Fixed Point Types

152 SystemC 2.0 User’s Guide

SystemC 2.0 User’s Guide 153

CHAPTER 8 Simulation and
Debugging Using
SystemC

After you write a system description in SystemC, you typically want to simulate it
as the next step in the design flow. This chapter describes the simulation control
facilities provided by SystemC to start and stop a simulation, query the current
time, and understand the order in which various processes are executed.

Writing a system description in SystemC gives you the advantage of using standard
C++ development tools for compiling and debugging. This chapter describes the
additional facilities that can help you debug SystemC programs.

Advanced Topic: SystemC Scheduler

NOTE: This section is outdated. For up-to-date information, please refer to Section
5.3 in the Functional Specification for SystemC 2.0 document.

SystemC simulation is cycle-based: processes are executed and signals are updated
at clock transitions. The SystemC library includes a cycle-based scheduler that han-
dles all events on signals, and it schedules processes when the appropriate events
happen at their inputs. SystemC simulation follows the evaluate-update paradigm
where all processes that are ready to be executed are executed, and only then are
their output signals updated.

Simulation and Debugging Using SystemC

154 SystemC 2.0 User’s Guide

The scheduler in SystemC executes the following steps during simulation.

1. All clock signals that change their value at the current time are assigned their
new values.

2. All SC_METHOD/SC_THREAD processes with inputs that have changed are
executed. The entire body of SC_METHOD function processes are executed,
while SC_THREAD processes are executed until the next wait() statement sus-
pends execution of the process. SC_METHOD/SC_THREAD processes are not
executed in a fixed order.

3. All SC_CTHREAD processes that are triggered have their outputs updated, and
they are saved in a queue to be executed later in step 5. All outputs of
SC_METHOD/SC_THREAD processes that were executed in step 1 are also
updated.

4. Steps 2 and 3 are repeated until no signal changes its value.

5. All SC_CTHREAD processes that were triggered and queued in step 3 are exe-
cuted. There is no fixed execution order of these processes. Their outputs are
updated at the next active edge (when step 3 is executed), and therefore are
saved internally.

6. Simulation time is advanced to the next clock edge and the scheduler goes back
to step 1.

If processes communicate using signals, the process execution order should not
affect the simulation results. However, if global variables and pointers are used,
process execution order affects the simulation results. Note that these simulation
semantics are similar to Verilog simulation semantics with deferred signal assign-
ments and VHDL simulation semantics.

Simulation Control

You can only start simulation after you instantiate and properly connect all modules
and signals. In SystemC, simulation starts by calling sc_start() from the top level,
namely the sc_main() routine. The sc_start() function takes a variable of type dou-
ble as an argument and simulates the system for as many default time units as the
value of the variable. If you want the simulation to continue indefinitely, provide a
negative value for the argument to this function. This routine generates all the clock
signals at the appropriate times and calls the SystemC scheduler.

SystemC 2.0 User’s Guide 155

Simulation Control

Simulation can be stopped anytime (from within any process) by calling sc_stop().
The function does not take arguments.

You can determine the current time during simulation by calling
sc_simulation_time(). This function returns the current simulation time in a vari-
able of type double.

To aid in debugging during simulation, variables, ports, and signal values can be
read and printed. The printed value of a port or a signal is the current value of the
port or signal, not a value just written to it.

Advanced Simulation Control Techniques

You have the option to use a different method to generate clocks and control simu-
lation than using sc_start(). To do that, you have to first call sc_initialize() to initial-
ize the SystemC scheduler. Then you can set signals to values by writing to them,
and calling the routine sc_cycle() to simulate the result of setting the signals. This
function takes a variable of type double as an argument. It calls the SystemC sched-
uler, simulates until the current effects of the signal writes are propagated through-
out the system. It then advances simulation time by the amount given as the
argument to the function. For example, if the default time unit is 1 ns, sc_cycle(10)
advances the simulation time by 10 ns.

For examples, assume you have defined a clock as:

sc_clock clk(“my clock”, 20, 0.5);

You can simulate the generation of clocks for 200 default time units by calling

sc_start(200);

On the other hand, you can generate the clock yourself by doing the following:

sc_signal<bool> clock;

sc_initialize();
for (int i = 0; i <= 200; i++)

clock = 1;
sc_cycle(10);
clock = 0;
sc_cycle(10);

}

Simulation and Debugging Using SystemC

156 SystemC 2.0 User’s Guide

Using this capability, you can inject events asynchronously with respect to the
clock into the system, as shown in the following drawing.

FIGURE 4. Signal Asynchronous to Clock

To implement this, you can write the following in sc_main():

sc_initialize();
// Let the clock run for 10 cycles
for (int i = 0; i <= 200; i++)

clock = 1;
sc_cycle(10);
clock = 0;
sc_cycle(10);

}

// Inject asynchronous reset
clock = 1;
sc_cycle(5);
reset = 1;
sc_cycle(5);
clock = 0;
sc_cycle(10);
clock = 1;
sc_cycle(5);
reset = 0;

clock

reset

SystemC 2.0 User’s Guide 157

Tracing Waveforms

sc_cycle(5);
clock = 0;
sc_cycle(10);

// Now let the clock run indefinitely
for (;;)

clock = 1;
sc_cycle(10);
clock = 0;
sc_cycle(10);

}

Note that sc_cycle() can only be called from the top level similar to sc_start().

Tracing Waveforms

SystemC provides functions that let you create a VCD (Value Change Dump),
ASCII WIF (Waveform Intermediate Format), or ISDB (Integrated Signal Data
Base) file that contains the values of variables and signals as they change during
simulation. The waveforms defined in these files can be viewed using standard
waveform viewers that support the VCD, WIF, or ISDB formats.

In generating waveforms, note the following:

• Only variables that are in scope during the entire simulation can be traced. This
means all signals and data members of modules can be traced. Variables local to
a function cannot be traced.

• Variables and signals of scalar, array and aggregate types can be traced.

• Different types of trace files can be created during the same simulation run.

• A signal or variable can be traced any number of times in different trace for-
mats.

Creating the Trace File

The first step in tracing waveforms is creating the trace file. The trace file is usually
created at the top level after all modules and signals have been instantiated. For
tracing waveforms using the VCD format, the trace file is created by calling the
sc_create_vcd_trace_file() function with the name of the file as an argument. This

Simulation and Debugging Using SystemC

158 SystemC 2.0 User’s Guide

function returns a pointer to a data structure that is used during tracing. For exam-
ple,

sc_trace_file * my_trace_file;
my_trace_file = sc_create_vcd_trace_file(“my_trace”);

creates the VCD file named my_trace.vcd (the .vcd extension is automatically
added). A pointer to the trace file data structure is returned. You need to store this
pointer so it can be used in calls to the tracing routines.

To create a WIF file, the sc_create_wif_trace_file() function needs to be called. For
example,

sc_trace_file *trace_file;
my_trace_file = sc_create_wif_file(“my_trace”);

creates the WIF file named my_trace.awif (the .awif extension is automatically
added). Similarly, an ISDB trace file can be created.

At the end of simulation the trace files need to be closed or errors can result. Close
the trace files with one of the following functions.

 sc_close_isdb_trace_file(my_trace_file);
 sc_close_wif_trace_file(my_trace_file);
 sc_close_vcd_trace_file(my_trace_file);

Call the function appropriate to the type of file that was created. Call this function
just before the return statement in your sc_main routine.

Tracing Scalar Variable and Signals

SystemC provides tracing functions for scalar variables and signals. All tracing
functions have the following in common:

• The function is named sc_trace().

• Their first argument is a pointer to the trace file data structure sc_trace_file.

• Their second argument is a reference or a pointer to a variable being traced.

• Their third argument is a reference to a string.

For example, the following illustrates how a signal of type int and a variable of type
float are traced.

SystemC 2.0 User’s Guide 159

Tracing Waveforms

sc_signal<int> a;
float b;

sc_trace(trace_file, a, “MyA”);
sc_trace(trace_file, b, “B”);

In this example, trace_file is a pointer of type sc_trace_file, that was created earlier.
“MyA” is the name of the int variable as it would appear in the waveform viewer,
and “B” is the name of the float variable.

The trace function registers (creates a list of) the signals and variables to be traced.
The actual tracing happens during simulation and is handled by the SystemC sched-
uler. Note that calls to the sc_trace() functions are made only after the processes
and signals are instantiated and after the trace file is opened.

Tracing Variables and Signals of Aggregate Type

The trace functions defined in SystemC can accept signals or variables of scalar
types only. To trace variables of aggregate type, you need to define special trace
functions for variables of these types using the basic trace functions that are provide
in SystemC.

For example, consider the structure

struct bus {
unsigned address;
bool read_write;
unsigned data;

};

You need to define a trace function for this structure as follows:

void sc_trace(sc_trace_file *tf, const bus& v, const
sc_string& NAME)
{

sc_trace(tf, v.address, NAME + “.address”);
sc_trace(tf, v.read_write, NAME + “.rw”);
sc_trace(tf, v.data, NAME + “.data”);

}

Simulation and Debugging Using SystemC

160 SystemC 2.0 User’s Guide

When called, this trace function traces the data structure by tracing individual fields
of the structure. Note that each individual field of the structure is given a unique
name by appending the field name to the structure name.

Tracing Variable and Signal Arrays

To trace a variable or signal array, you need to define a specialized trace function
using the basic data or signal trace functions SystemC provides. For example, the
trace function for arrays of type sc_signal<int> are

void sc_trace(sc_trace_file *tf, sc_signal<int> *v,
const sc_string& NAME, int len)
{

char stbuf[20];
for (int i = 0; i< len; i++) {

sprintf(stbuf, “[%d]”, i);
sc_trace(tf, v[i], NAME + stbuf);

}
}

This trace function has one additional argument, which is the length of the array to
be traced.

SystemC has predefined trace functions for all SystemC defined vector types
(sc_int<>, sc_uinit<>, sc_biginit<>, sc_bigunit<>, sc_lv<>,
and so forth).

Debugging SystemC

Because each thread or clocked-thread process generates a new thread of execution,
debugging the simulation can be more difficult than with a typical linearly executed
C++ program. The execution threads in the simulation means the simulation pro-
ceeds in a nonlinear fashion. It may be difficult to determine the code that will be
executed next.

You may want to debug only your code, not the SystemC class libraries. The easiest
way to debug a design is to place a breakpoint at the beginning of a process that you
are interested in debugging. When the simulation stops at one of these breakpoints,
simulation will halt and you can debug the appropriate process as required.

SystemC 2.0 User’s Guide 161

Debugging SystemC

Simulation and Debugging Using SystemC

162 SystemC 2.0 User’s Guide

SystemC 2.0 User’s Guide 163

Appendix A VHDL Designer’s Guide

This section will focus on helping VHDL designers learn how to write different
types of models in SystemC. This section will present several complete models in
SystemC and VHDL so that the VHDL designer can compare and contrast these
models and learn how to write better SystemC models.

DFF Examples

D flip flops are one of the basic building blocks of RTL design. Here are a few
examples of some VHDL D flip flops and the corresponding SystemC models for
comparison.

Synchronous D Flip Flop

Here is the VHDL Model for a standard RTL D flip flop.

library ieee;
use ieee.std_logic_1164.all;
entity dff is
 port(clock : in std_logic;
 din : in std_logic;
 dout : out std_logic);

164 SystemC 2.0 User’s Guide

end dff;

architecture rtl of dff is
begin
 process
 begin
 wait until clock’event and clock = ‘1’;
 dout <= din;
 end process;
end rtl;

Here is a corresponding SystemC model:

SystemC Implementation

// dff.h

#include "systemc.h"

SC_MODULE(dff)
{
 sc_in<bool> din;
 sc_in<bool> clock;
 sc_out<bool> dout;

 void doit()
 {
 dout = din;
 };

 SC_CTOR(dff)
 {
 SC_METHOD(doit);
 sensitive_pos << clock;
 }
};

SystemC 2.0 User’s Guide 165

DFF Examples

D Flip Flop with Asynchronous Reset

One of the most common flip flops used in designs is the Dff with asynchronous
reset. These flip flops help the designer get a design to start at a known state easily.
By providing an active reset signal at design power up the designer can reset the
flip flops of the design to a known state.

Here is the VHDL for a D flip flop with an asynchronous reset input.

library ieee;
use ieee.std_logic_1164.all;
entity dffa is
 port(clock : in std_logic;
 reset : in std_logic;
 din : in std_logic;
 dout : out std_logic);
end dffa;

architecture rtl of dffa is
begin
 process(reset, clock)
 begin
 if reset = ‘1’ then
 dout <= ‘0’;
 elsif clock’event and clock = ‘1’ then
 dout <= din;
 end if;
 end process;
end rtl;

The SystemC model looks similar to the normal D flip flop discussed in the last
section, but now has the reset signal in the process sensitivity list. Positive edges on
the clock input or changes in value of the reset signal will cause process do_ffa to
activate.

The process first checks the value of reset. If reset is equal to 1 the flip flop output
is set to 0. If reset is not active the process will look for a positive edge on input
clock. This is accomplished by using the event() method on the clock input port.
This method works just like the ‘event method in VHDL. It will be true if an event
has just occurred on input clock.

166 SystemC 2.0 User’s Guide

Here is the corresponding SystemC implementation.

// dffa.h

#include "systemc.h"

SC_MODULE(dffa)
{
 sc_in<bool> clock;
 sc_in<bool> reset;
 sc_in<bool> din;
 sc_out<bool> dout;

 void do_ffa()
 {
 if (reset) {
 dout = false;
 } else if (clock.event()) {
 dout = din;
 }
 };

 SC_CTOR(dffa)
 {
 SC_METHOD(do_ffa);
 sensitive(reset);
 sensitive_pos(clock);
 }
};

Shifter

The next few examples add more complexity. This module implements a very basic
8 bit shifter block. the shifter can be loaded with a new value by placing a value on
input din, setting input load to 1, and causing a positive edge to occur on input clk.
The shifter will shift the data left or right depending on the value of input LR. If LR
equals 0 the shifter will shift its contents right by 1 bit. If LR equals 1 the shifter
will shift its contents left by 1 bit.

SystemC 2.0 User’s Guide 167

Shifter

Here is the VHDL description:

library ieee;
use ieee.std_logic_1164.all;
entity shift is
 port(din : in std_logic_vector(7 downto 0);
 clk : in std_logic;
 load : in std_logic;
 LR : in std_logic;
 dout : inout std_logic_vector(7 downto 0));
end shift;

architecture rtl of shift is
 signal shiftval : std_logic_vector(7 downto 0);
begin
 nxt: process(load, LR, din, dout)
 begin
 if load = ‘1’ then
 shiftval <= din;

 elsif LR = ‘0’ then
 shiftval(6 downto 0) <= dout(7 downto 1);
 shiftval(7) <= ‘0’;

 elsif LR = ‘1’ then
 shiftval(7 downto 1) <= dout(6 downto 0);
 shiftval(0) <= ‘0’;

 end if;
 end process;
end rtl;

SystemC Implementation

The SystemC implementation of the shifter uses process shifty to perform the shift-
ing and loading operations. This process is an SC_METHOD process sensitive only
to the positive edge of input clk. A designer could use an SC_CTHREAD process
for this example and the behavior would be the same. However and
SC_CTHREAD process is less efficient and the simulation will run slower.

168 SystemC 2.0 User’s Guide

Whenever the clock has a positive edge process shifty will activate and check the
value of input load. If load is 1 the current value of din is assigned to shiftval, the
local value of the shifter at all times. Local value shiftval is needed because the
value of output ports cannot be read. Notice that at the end of the process shiftval is
assigned to dout.

If load is not active the process will check the value of input LR and perform the
appropriate action based on the value of LR. To perform the actual shifting opera-
tion notice that process shifty uses the range() method.

Here is the SystemC implementation:

// shift.h

#include “systemc.h”

SC_MODULE(shift)
{
 sc_in<sc_bv<8> > din;
 sc_in<bool> clk;
 sc_in<bool> load;
 sc_in<bool> LR;
 sc_out<sc_bv<8> > dout;

 sc_bv<8> shiftval;

 void shifty();

 SC_CTOR(shift)
 {
 SC_METHOD(shifty);
 sensitive_pos (clk);
 }
};

// shift.cc

#include “shift.h”

void shift::shifty()
{

SystemC 2.0 User’s Guide 169

Counter

 if (load) {
 shiftval = din;
 } else if (!LR) {
 shiftval.range(6,0) = shiftval.range(7,1);
 shiftval[7] = ‘0’;
 } else if (LR) {
 shiftval.range(7,1) = shiftval.range(6,0);
 shiftval[0] = ‘0’;
 }
 dout = shiftval;
}

Counter

The next example is an 8 bit counter. This counter can be set to a value by setting
the value of input load to 1 and placing the value to load on input din. The counter
can be cleared by setting input clear to a 1. Below is the VHDL implementation.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity counter is
 port(clock : in std_logic;
 load : in std_logic;
 clear : in std_logic;
 din : in std_logic_vector(7 downto 0);
 dout : inout std_logic_vector(7 downto 0));
end counter;

architecture rtl of counter is
 signal countval : std_logic_vector(7 downto 0);
begin
 process(load, clear, din, dout)
 begin
 if clear = ‘1’ then
 countval <= “00000000”;

 elsif load = ‘1’ then

170 SystemC 2.0 User’s Guide

 countval <= din;

 else
 countval <= dout + “00000001”;
 end if;

 end process;

 process
 begin
 wait until clock’event and clock = ‘1’;
 dout <= countval;
 end process;

end rtl;

SystemC Implementation

Here is the SystemC implementation of the counter. Input ports clock, load, and
clear are of type bool. Ports din and dout are 8 bit vector ports. Internally an int
named countval is used to hold the value of the counter. When clear is a 1 countval
is set to 0. When load is a 1 countval is set to the value on port din. Notice the
read() method used when the port is read. This method is used because an implicit
type conversion is happening when din is assigned to countval. This method helps
SystemC determine the type of the port easier so that the correct conversion func-
tion can be called.

// counter.h

#include "systemc.h"

SC_MODULE(counter)
{
 sc_in<bool> clock;
 sc_in<bool> load;
 sc_in<bool> clear;
 sc_in<sc_int<8> > din;
 sc_out<sc_int<8> > dout;

 int countval;

SystemC 2.0 User’s Guide 171

State Machine

 void onetwothree();

 SC_CTOR(counter)
 {
 SC_METHOD(onetwothree);
 sensitive_pos (clock);
 }
};

// counter.cc

#include "counter.h"

void counter::onetwothree()
{
 if (clear) {
 countval = 0;
 } else if (load) {
 countval = din.read(); // use read when a type
 // conversion is happening
 // from an input port
 } else {
 countval++;
 }
 dout = countval;
}

State Machine

The next example is a state machine. This example represents a state machine
within a voicemail controller. The state machine will start in the main state and then
transition to a send state or review state depending on user inputs. From the review
or send states the user can go to other states such as repeat, erase, record, etc. Out-
put signals play, recrd, erase, save and address are triggered as each of these states
are entered thereby controlling the voicemail system.
Here is the VHDL implementation:

172 SystemC 2.0 User’s Guide

package vm_pack is
 type t_vm_state is (main_st, review_st, repeat_st,
 save_st, erase_st, send_st,
 address_st, record_st,
 begin_rec_st, message_st);
 type t_key is (‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’,
 ‘7’, ‘8’, ‘9’, ‘*’, ‘#’);
end vm_pack;

use work.vm_pack.all;
library ieee;
use ieee.std_logic_1164.all;
entity stmach is
 port(clk : in std_logic;
 key : in t_key;
 play, recrd, erase, save,
 address : out std_logic);
end stmach;

architecture rtl of stmach is
 signal next_state, current_state : t_vm_state;
begin
 process(current_state, key)
 begin

 play <= ‘0’;
 save <= ‘0’;
 erase <= ‘0’;
 recrd <= ‘0’;
 address <= ‘0’;

 case current_state is
 when main_st =>
 if key = ‘1’ then
 next_state <= review_st;
 elsif key = ‘2’ then
 next_state <= send_st;
 else
 next_state <= main_st;
 end if;

SystemC 2.0 User’s Guide 173

State Machine

 when review_st =>
 if key = ‘1’ then
 next_state <= repeat_st;
 elsif key = ‘2’ then
 next_state <= save_st;
 elsif key = ‘3’ then
 next_state <= erase_st;
 elsif key = ‘#’ then
 next_state <= main_st;
 else
 next_state <= review_st;
 end if;

 when repeat_st =>
 play <= ‘1’;
 next_state <= review_st;

 when save_st =>
 save <= ‘1’;
 next_state <= review_st;

 when erase_st =>
 erase <= ‘1’;
 next_state <= review_st;

 when send_st =>
 next_state <= address_st;

 when address_st =>
 address <= ‘1’;
 if key = ‘#’ then
 next_state <= record_st;
 else
 next_state <= address_st;
 end if;

 when record_st =>
 if key = ‘5’ then
 next_state <= begin_rec_st;
 else

174 SystemC 2.0 User’s Guide

 next_state <= record_st;
 end if;

 when begin_rec_st =>
 recrd <= ‘1’;
 next_state <= message_st;

 when message_st =>
 recrd <= ‘1’;
 if key = ‘#’ then
 next_state <= send_st;
 else
 next_state <= message_st;
 end if;
 end case;
 end process;

 process
 begin
 wait until clk’event and clk = ‘1’;
 current_state <= next_state;
 end process;

end rtl;

SystemC State Machine

The SystemC implementation uses two enum types to represent the state of the state
machine and the state of the key values passed to the state machine. The state
machine implementation consists of two SC_METHOD processes. SC_METHOD
processes are by far the most efficient processes and should be used where possible.
Process getnextst calculates the new state of the state machine based on the current
state and the input values. Process setstate copies the calculated next_state to the
current_state every positive clock edge on input clk.

// stmach.h

#include “systemc.h”

SystemC 2.0 User’s Guide 175

State Machine

enum vm_state {
 main_st, review_st, repeat_st, save_st,
 erase_st, send_st, address_st,
 record_st, begin_rec_st, message_st
};

SC_MODULE(stmach)
{
 sc_in<bool> clk;
 sc_in<char> key;
 sc_out<sc_logic> play;
 sc_out<sc_logic> recrd;
 sc_out<sc_logic> erase;
 sc_out<sc_logic> save;
 sc_out<sc_logic> address;

 sc_signal<vm_state> next_state;
 sc_signal<vm_state> current_state;

 void getnextst();
 void setstate();

 SC_CTOR(stmach)
 {
 SC_METHOD(getnextst);
 sensitive << key << current_state;
 SC_METHOD(setstate);
 sensitive_pos (clk);
 }
};

// stmach.cc

#include “stmach.h”

void stmach::getnextst()
{
 play = SC_LOGIC_0;
 recrd = SC_LOGIC_0;
 erase = SC_LOGIC_0;
 save = SC_LOGIC_0;

176 SystemC 2.0 User’s Guide

 address = SC_LOGIC_0;

 switch (current_state) {

 case main_st:
 if (key == ‘1’) {
 next_state = review_st;
 } else {
 if (key == ‘2’) {
 next_state = send_st;
 } else {
 next_state = main_st;
 }
 }
 break;

 case review_st:
 if (key == ‘1’) {
 next_state = repeat_st;
 } else {
 if (key == ‘2’) {
 next_state = save_st;
 } else {
 if (key == ‘3’) {
 next_state = erase_st;
 } else {
 if (key == ‘#’) {
 next_state = main_st;
 } else {
 next_state = review_st;
 }
 }
 }
 }
 break;

 case repeat_st:
 play = SC_LOGIC_1;
 next_state = review_st;
 break;

SystemC 2.0 User’s Guide 177

State Machine

 case save_st:
 save = SC_LOGIC_1;
 next_state = review_st;
 break;

 case erase_st:
 erase = SC_LOGIC_1;
 next_state = review_st;
 break;

 case send_st:
 next_state = address_st;
 break;

 case address_st:
 address = SC_LOGIC_1;
 if (key == ‘#’) {
 next_state = record_st;
 } else {
 next_state = address_st;
 }
 break;

 case record_st:
 if (key == ‘5’) {
 next_state = begin_rec_st;
 } else {
 next_state = record_st;
 }
 break;

 case begin_rec_st:
 recrd = SC_LOGIC_1;
 next_state = message_st;
 break;

 case message_st:
 recrd = SC_LOGIC_1;
 if (key == ‘#’) {
 next_state = send_st;
 } else {

178 SystemC 2.0 User’s Guide

 next_state = message_st;
 }
 break;

 } // end switch
} // end method

void stmach::setstate()
{
 current_state = next_state;
}

Memory

The last module is a very simple memory model. The memory device has an enable
port to activate the device, and a readwr port to determine whether or not the device
is being written to or read from. The memory module has a single data inout bus
that either delivers the addressed item, or accepts data to write to a location.When
the enable input is 0, the output of the ram device will be all ‘Z’ (hi impedance) and
no read or write operations can be performed. To read a location set enable to ‘1’,
readwr to ‘0’, and apply the appropriate address. To write a location set enable to
‘1’, readwr to ‘1’, addr to the appropriate location to write, and data to the data
value to write.

The model is implemented in VHDL with a single process so that a variable can be
used to store the memory data. Notice that the SystemC implementation uses two
processes, one for read and one for write.

Here is the VHDL model:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity ram is
 port(enable : in std_logic;
 readwr : in std_logic;
 addr : in std_logic_vector(7 downto 0);
 data : inout std_logic_vector(15 downto 0)
);

SystemC 2.0 User’s Guide 179

Memory

end ram;

architecture rtl of ram is
begin
 process(addr, enable, readwr)
 subtype data16 is std_logic_vector(15 downto 0);
 type ramtype is array(0 to 255) of data16;
 variable ramdata : ramtype;
 begin
 if (enable = ‘1’) then
 if readwr = ‘0’ then
 data <= ramdata(conv_integer(addr));
 elsif readwr = ‘1’ then
 ramdata(conv_integer(addr)) := data;
 end if;
 else
 data <= “ZZZZZZZZZZZZZZZZ”;
 end if;
 end process;
end rtl;

SystemC Implementation

The SystemC implementation has similar port types to the VHDL model, but opti-
mized for SystemC. Notice that addr is an sc_int of 8 bits. This is the most efficient
implementation for object of less than 64 bits. Also notice that port data is an
sc_inout_rv type. The port needs to be inout, and needs the ability to tristate the
output. A resolved vector type will allow the output to tristate and still be able to
connect to tristate busses.

The ram module contains two SC_METHOD processes. One for reading the ram
and one for writing the ram. Notice that the process that writes the ram also has to
be sensitive to changes on input port data so that the proper value gets written into
the ram.

// ram.h

#include “systemc.h”

SC_MODULE(ram)

180 SystemC 2.0 User’s Guide

{
 sc_in<sc_int<8> > addr;
 sc_in<bool> enable;
 sc_in<bool> readwr;
 sc_inout_rv<16> data;

 void read_data();
 void write_data();

 sc_lv<16> ram_data[256];

 SC_CTOR(ram)
 {
 SC_METHOD(read_data);
 sensitive << addr << enable << readwr;
 SC_METHOD(write_data);
 sensitive << addr << enable << readwr << data;
 }
};

// ram.cc

#include “ram.h”

void ram::read_data()
{
 if (enable && ! readwr) {
 data = ram_data[addr.read()];
 } else {
 data = “ZZZZZZZZZZZZZZZZ”;
 }
}

void ram::write_data()
{
 if (enable && readwr) {
 ram_data[addr.read()] = data;
 }
}

SystemC 2.0 User’s Guide 181

Appendix B Verilog Designers’ Guide

This section is for Verilog designers wanting to learn how to write good SystemC
models. This section will present a number of Verilog models and then the SystemC
models for the same design. The Verilog designer can then compare and contrast
the models to get a better understanding of how to write SystemC models.

DFF Examples

D flip flops are one of the basic building blocks of RTL design. Here are a few
examples of some Verilog D flip flops and the corresponding SystemC models for
comparison.

Synchronous D Flip Flop

Here is the Verilog model for a standard RTL D flip flop

module dff(din, clock, dout);
input din;
input clock;
output dout;

reg dout;

182 SystemC 2.0 User’s Guide

always @(posedge clock)
 dout <= din;

endmodule

SystemC Implementation

// dff.h

#include "systemc.h"

SC_MODULE(dff)
{
 sc_in<bool> din;
 sc_in<bool> clock;
 sc_out<bool> dout;

 void doit()
 {
 dout = din;
 };

 SC_CTOR(dff)
 {
 SC_METHOD(doit);
 sensitive_pos << clock;
 }
};

Asynchronous Reset D Flip Flop

D Flip Flop with Asynchronous Reset

One of the most common flip flops used in designs is the Dff with asynchronous
reset. These flip flops help the designer get a design to start at a known state easily.
By providing an active reset signal at design power up the designer can reset the
flip flops of the design to a known state.

SystemC 2.0 User’s Guide 183

Asynchronous Reset D Flip Flop

Here is the Verilog description for a D flip flop with an asynchronous reset input.

module dffa(clock, reset, din, dout);
input clock, reset, din;
output dout;

reg dout;

always @(posedge clock or reset)
begin
 if (reset)
 dout <= 1’b0;
 else
 dout = din;
end
endmodule

SystemC Implementation

The SystemC model looks similar to the normal D flip flop discussed in the last
section, but now has the reset signal in the process sensitivity list. Positive edges on
the clock input or changes in value of the reset signal will cause process do_ffa to
activate.

The process first checks the value of reset. If reset is equal to 1 the flip flop output
is set to 0. If reset is not active the process will look for a positive edge on input
clock. This is accomplished by using the event() method on the clock input port.
This method works just like the ‘event method in VHDL. It will be true if an event
has just occurred on input clock.

Here is the corresponding SystemC implementation.

// dffa.h

#include "systemc.h"

SC_MODULE(dffa)
{
 sc_in<bool> clock;
 sc_in<bool> reset;

184 SystemC 2.0 User’s Guide

 sc_in<bool> din;
 sc_out<bool> dout;

 void do_ffa()
 {
 if (reset) {
 dout = false;
 } else if (clock.event()) {
 dout = din;
 }
 };

 SC_CTOR(dffa)
 {
 SC_METHOD(do_ffa);
 sensitive(reset);
 sensitive_pos(clock);
 }
};

Shifter

The next few examples add more complexity. This module implements a very basic
8 bit shifter block. the shifter can be loaded with a new value by placing a value on
input din, setting input load to 1, and causing a positive edge to occur on input clk.
The shifter will shift the data left or right depending on the value of input LR. If LR
equals 0 the shifter will shift its contents right by 1 bit. If LR equals 1 the shifter
will shift its contents left by 1 bit.

Here is the Verilog description:

module shift(din, clk, load, LR, dout);
input [0:7] din;
input clk, load, LR;
output [0:7] dout;

wire [0:7] dout;
reg [0:7] shiftval;

SystemC 2.0 User’s Guide 185

Shifter

assign dout = shiftval;
always @(posedge clk)
begin
 if (load)
 shiftval = din;
 else if (LR)
 begin
 shiftval[0:6] = shiftval[1:7];
 shiftval[7] = 1’b0;
 end
 else if (!LR)
 begin
 shiftval[1:7] = shiftval[0:6];
 shiftval[0] = 1’b0;
 end
end
endmodule

SystemC Implementation

The SystemC implementation of the shifter uses process shifty to perform the shift-
ing and loading operations. This process is an SC_METHOD process sensitive only
to the positive edge of input clk. A designer could use an SC_CTHREAD process
for this example and the behavior would be the same. However and
SC_CTHREAD process is less efficient and the simulation will run slower.

Whenever the clock has a positive edge process shifty will activate and check the
value of input load. If load is 1 the current value of din is assigned to shiftval, the
local value of the shifter at all times. Local value shiftval is needed because the
value of output ports cannot be read. Notice that at the end of the process shiftval is
assigned to dout.

If load is not active the process will check the value of input LR and perform the
appropriate action based on the value of LR. To perform the actual shifting opera-
tion notice that process shifty uses the range() method.

Here is the SystemC implementation:

// shift.h

186 SystemC 2.0 User’s Guide

#include “systemc.h”

SC_MODULE(shift)
{
 sc_in<sc_bv<8> > din;
 sc_in<bool> clk;
 sc_in<bool> load;
 sc_in<bool> LR;
 sc_out<sc_bv<8> > dout;

 sc_bv<8> shiftval;

 void shifty();

 SC_CTOR(shift)
 {
 SC_METHOD(shifty);
 sensitive_pos (clk);
 }
};

// shift.cc

#include “shift.h”

void shift::shifty()
{
 if (load) {
 shiftval = din;
 } else if (LR) {
 shiftval.range(0,6) = shiftval.range(1,7);
 shiftval[7] = ‘0’;
 } else if (!LR) {
 shiftval.range(1,7) = shiftval.range(0,6);
 shiftval[0] = ‘0’;
 }
 dout = shiftval;
}

SystemC 2.0 User’s Guide 187

Counter

Counter

The next example is an 8 bit counter. This counter can be set to a value by setting
the value of input load to 1 and placing the value to load on input din. The counter
can be cleared by setting input clear to a 1. Below is the Verilog implementation.

module counter(clock, load, clear, din, dout);
input clock, load, clear;
input [0:7] din;
output [0:7] dout;

wire [0:7] dout;
reg [0:7] countval;

assign dout = countval;

always @(posedge clock)
begin
 if (clear)
 countval = 0;
 else if (load)
 countval = din;
 else
 countval = countval + 1;
end
endmodule

SystemC Implementation

Here is the SystemC implementation of the counter. Input ports clock, load, and
clear are of type bool. Ports din and dout are 8 bit vector ports. Internally an int
named countval is used to hold the value of the counter. When clear is a 1 countval
is set to 0. When load is a 1 countval is set to the value on port din. Notice the
read() method used when the port is read. This method is used because an implicit
type conversion is happening when din is assigned to countval. This method helps
SystemC determine the type of the port easier so that the correct conversion func-
tion can be called.

// counter.h

188 SystemC 2.0 User’s Guide

#include "systemc.h"

SC_MODULE(counter)
{
 sc_in<bool> clock;
 sc_in<bool> load;
 sc_in<bool> clear;
 sc_in<sc_int<8> > din;
 sc_out<sc_int<8> > dout;

 int countval;

 void onetwothree();

 SC_CTOR(counter)
 {
 SC_METHOD(onetwothree);
 sensitive_pos (clock);
 }
};

// counter.cc

#include "counter.h"

void counter::onetwothree()
{
 if (clear) {
 countval = 0;
 } else if (load) {
 countval = din.read(); // use read when a type
 // conversion is happening
 // from an input port
 } else {
 countval++;
 }
 dout = countval;
}

SystemC 2.0 User’s Guide 189

State Machine

State Machine

The next example is a state machine. This example represents a state machine
within a voicemail controller. The state machine will start in the main state and then
transition to a send state or review state depending on user inputs. From the review
or send states the user can go to other states such as repeat, erase, record, etc. Out-
put signals play, recrd, erase, save and address are triggered as each of these states
are entered thereby controlling the voicemail system.

Here is the Verilog implementation:

// def.v
parameter main_st = 4’b0000,
 review_st = 4’b0001,
 repeat_st = 4’b0010,
 save_st = 4’b0011,
 erase_st = 4’b0100,
 send_st = 4’b0101,
 address_st = 4’b0110,
 record_st = 4’b0111,
 begin_rec_st = 4’b1000,
 message_st = 4’b1001;

parameter zero = 4’b0000,
 one = 4’b0001,
 two = 4’b0010,
 three = 4’b0011,
 four = 4’b0100,
 five = 4’b0101,
 six = 4’b0110,
 seven = 4’b0111,
 eight = 4’b1000,
 nine = 4’b1001,
 star = 4’b1010,
 pound = 4’b1011;

// statemach.v
module stmach(clk, key, play, recrd, erase, save,
 address);

‘include “def.v”

190 SystemC 2.0 User’s Guide

input clk;
input [0:3] key;
output play, recrd, erase, save, address;

reg [0:3] next_state;
reg [0:3] current_state;
reg play, recrd, erase, save, address;

always @(posedge clk)
 current_state = next_state;

always @(key or current_state)
begin
 play = 1’b0;
 recrd = 1’b0;
 erase = 1’b0;
 save = 1’b0;
 address = 1’b0;

 case (current_state)
 main_st : begin
 if (key == one)
 next_state = review_st;
 else if (key == two)
 next_state = send_st;
 else
 next_state = main_st;
 end
 review_st:begin
 if (key == one)
 next_state = repeat_st;
 else if (key == two)
 next_state = save_st;
 else if (key == three)
 next_state = erase_st;
 else if (key == pound)
 next_state = main_st;
 else
 next_state = review_st;
 end
 repeat_st: begin

SystemC 2.0 User’s Guide 191

State Machine

 play = 1’b1;
 next_state = review_st;
 end
 save_st:begin
 save = 1’b1;
 next_state = review_st;
 end
 erase_st:begin
 erase = 1’b1;
 next_state = review_st;
 end
 send_st:begin
 next_state = address_st;
 end
 address_st:begin
 address = 1’b1;
 if (key == pound)
 next_state = record_st;
 else
 next_state = address_st;
 end
 record_st: begin
 if (key == five)
 next_state = begin_rec_st;
 else
 next_state = record_st;
 end
 begin_rec_st: begin
 recrd = 1’b1;
 next_state = message_st;
 end
 message_st: begin
 recrd = 1’b1;
 if (key == pound)
 next_state = send_st;
 else
 next_state = message_st;
 end
 endcase
 end
endmodule

192 SystemC 2.0 User’s Guide

SystemC State Machine

The SystemC implementation uses two enum types to represent the state of the state
machine and the state of the key values passed to the state machine. The state
machine implementation consists of two SC_METHOD processes. SC_METHOD
processes are by far the most efficient processes and should be used where possible.
Process getnextst calculates the new state of the state machine based on the current
state and the input values. Process setstate copies the calculated next_state to the
current_state every positive clock edge on input clk.

// stmach.h

#include “systemc.h”

enum vm_state {
 main_st, review_st, repeat_st, save_st,
 erase_st, send_st, address_st,
 record_st, begin_rec_st, message_st
};

SC_MODULE(stmach)
{
 sc_in<bool> clk;
 sc_in<char> key;
 sc_out<sc_logic> play;
 sc_out<sc_logic> recrd;
 sc_out<sc_logic> erase;
 sc_out<sc_logic> save;
 sc_out<sc_logic> address;

 sc_signal<vm_state> next_state;
 sc_signal<vm_state> current_state;

 void getnextst();
 void setstate();

 SC_CTOR(stmach)
 {
 SC_METHOD(getnextst);

SystemC 2.0 User’s Guide 193

State Machine

 sensitive << key << current_state;
 SC_METHOD(setstate);
 sensitive_pos (clk);
 }
};

// stmach.cc

#include “stmach.h”

void stmach::getnextst()
{
 play = SC_LOGIC_0;
 recrd = SC_LOGIC_0;
 erase = SC_LOGIC_0;
 save = SC_LOGIC_0;
 address = SC_LOGIC_0;

 switch (current_state) {

 case main_st:
 if (key == ‘1’) {
 next_state = review_st;
 } else {
 if (key == ‘2’) {
 next_state = send_st;
 } else {
 next_state = main_st;
 }
 }
 break;

 case review_st:
 if (key == ‘1’) {
 next_state = repeat_st;
 } else {
 if (key == ‘2’) {
 next_state = save_st;
 } else {
 if (key == ‘3’) {
 next_state = erase_st;

194 SystemC 2.0 User’s Guide

 } else {
 if (key == ‘#’) {
 next_state = main_st;
 } else {
 next_state = review_st;
 }
 }
 }
 }
 break;

 case repeat_st:
 play = SC_LOGIC_1;
 next_state = review_st;
 break;

 case save_st:
 save = SC_LOGIC_1;
 next_state = review_st;
 break;

 case erase_st:
 erase = SC_LOGIC_1;
 next_state = review_st;
 break;

 case send_st:
 next_state = address_st;
 break;

 case address_st:
 address = SC_LOGIC_1;
 if (key == ‘#’) {
 next_state = record_st;
 } else {
 next_state = address_st;
 }
 break;

 case record_st:
 if (key == ‘5’) {

SystemC 2.0 User’s Guide 195

Memory

 next_state = begin_rec_st;
 } else {
 next_state = record_st;
 }
 break;

 case begin_rec_st:
 recrd = SC_LOGIC_1;
 next_state = message_st;
 break;

 case message_st:
 recrd = SC_LOGIC_1;
 if (key == ‘#’) {
 next_state = send_st;
 } else {
 next_state = message_st;
 }
 break;

 } // end switch
} // end method

void stmach::setstate()
{
 current_state = next_state;
}

Memory

The last module is a very simple memory model. The memory device has an enable
port to activate the device, and a readwr port to determine whether or not the device
is being written to or read from. The memory module has a single data inout bus
that either delivers the addressed item, or accepts data to write to a location.When
the enable input is 0, the output of the ram device will be all ‘Z’ (hi impedance) and
no read or write operations can be performed. To read a location set enable to ‘1’,
readwr to ‘0’, and apply the appropriate address. To write a location set enable to
‘1’, readwr to ‘1’, addr to the appropriate location to write, and data to the data
value to write.

196 SystemC 2.0 User’s Guide

Here is the Verilog model:

module ram(addr, enable, readwr, data);
input [0:7] addr;
input enable, readwr;
inout [0:15] data;

reg [0:15] ram_data [0:255];

assign data = (enable & !readwr) ?
 ramdata[addr] : 16’bz;

always @(addr or enable or readwr or data)
begin
 if (enable & readwr)
 ramdata[addr] = data;
end
endmodule

SystemC Implementation

The SystemC implementation has similar port types to the VHDL model, but opti-
mized for SystemC. Notice that addr is an sc_int of 8 bits. This is the most efficient
implementation for object of less than 64 bits. Also notice that port data is an
sc_inout_rv type. The port needs to be inout, and needs the ability to tristate the
output. A resolved vector type will allow the output to tristate and still be able to
connect to tristate busses.

The ram module contains two SC_METHOD processes. One for reading the ram
and one for writing the ram. Notice that the process that writes the ram also has to
be sensitive to changes on input port data so that the proper value gets written into
the ram.

// ram.h

#include “systemc.h”

SC_MODULE(ram)
{
 sc_in<sc_int<8> > addr;

SystemC 2.0 User’s Guide 197

Memory

 sc_in<bool> enable;
 sc_in<bool> readwr;
 sc_inout_rv<16> data;

 void read_data();
 void write_data();

 sc_lv<16> ram_data[256];

 SC_CTOR(ram)
 {
 SC_METHOD(read_data);
 sensitive << addr << enable << readwr;
 SC_METHOD(write_data);
 sensitive << addr << enable << readwr << data;
 }
};

// ram.cc

#include “ram.h”

void ram::read_data()
{
 if (enable && !readwr) {
 data = ram_data[addr.read()];
 } else {
 data = “ZZZZZZZZZZZZZZZZ”;
 }
}

void ram::write_data()
{
 if (enable && readwr) {
 ram_data[addr.read()] = data;
 }
}

198 SystemC 2.0 User’s Guide

SystemC 2.0 User’s Guide i

Index

Symbols
.delayed() method 64
.neg method 63
.pos method 63
.range() 89
.signal() method 82
.to_string() method 97

A
abstraction level 3
arbitrary precision integer 91

operators 92
array

port 74
signal 75

assignment
deferred 72
Z value 97

autodecrement
operator 89

autoincrement operator 89

B
bit select 93
bit vector 93

operators 94
bus controller 59
bus resolution 75

C
C model

manual conversion 4
checking results 51
clock 3, 51

asynchronous to signal 156
clocked thread process 62
data members 80
duty cycle 80, 81
first edge 80, 81
first value 80
frequency 81
name 80
object 80
period 80

ii SystemC 2.0 User’s Guide

signal 82
clock object 62
clock period 80
clocked thread process 59

synthesis 59
compatibility

SystemC 0.9 7
concatenation 93
concatenation operator 89
condition 54
constructor

example 20
constructors

module 47
counter 169, 187
counter module 45
cycle-based simulation 3, 153

D
data 9
data members

local 20
data protocol

duplex 9
simplex 9
simplex C model 11
simplex SystemC model 15

debug 4, 153, 157–160
declarations

module pointer 43
design methodology

refinement 6
SystemC 5
traditional 4

dff 163, 181
asynchronous reset 165, 182

driver
disable 76, 96

duty cycle 80

E
equals overload 16
event 56

signal 54
event handlers 68

executable specification 2
exiting a loop 64
expression

watching 65, 66

F
fixed precision integer

operations 87
operators 88
size 87

fixed precision integers 87
flag

D_32BIT 91
flip flop 47
frequency

clock 81

G
global watching 67
graphic symbol 40

H
hierarchical design structure 72

I
implicit state machines 59
initialization

memory 48
inout port 40
instance

module 47
instance name

module 48
instantiation 42

module 49
integer

arbitrary precision 91
ISDB 4

J
jump out of a loop 64

L
learning SystemC 2
local data members 20

SystemC 2.0 User’s Guide iii

local methods 54
local variables 44
local watching 67
logic vector 95

resolved 75
values 95

loop exit 64

M
mapping

named 43
positional 42

MAX_NBITS 91
memory 178, 195
memory initialization 48
method 47

.delayed 64, 65

.to_string() 97
method process 54
methods

local 54
mode

port 40
module 3

constructors 47
instance 47
instance name 48
instantiation 49
lower level 42
ports 40
processes 46
signals 41
top level 43

module instantiation 79
module pointer declarations 43
multiple driver 76
multiple driver resolution 75

N
named binding

port 79
named mapping 43

O
object

clock 62, 80
operator

auto decrement 89
autoincrement 89
concatenation 89
overloading 98

operator overloading 16
output

port 40
overloaded operator 16
overloading

operator 98
overloading equals 16

P
part select 93
port 3

array port 74
binding 72
inout 40, 71
input 71
mode 71
named binding 79
output 40, 71
scalar 73
special case binding 72, 78
value 72

port binding
special case 72

port declaration syntax 73
port mode 40
port statement 41
port types

C++ 73
SystemC 73

Ports
module 40

ports 71
positional mapping 42
process 3

activation 62
basic 54
clocked thread 59
method 54
registration 46

iv SystemC 2.0 User’s Guide

sensitivity 47
sensitivity list 56
thread 56
trigger 54
types 53
wait statements 46

process execution
waiting 63

process sensitivity 54
processes 53

module 46

R
RAM 48
range method 89
refinement methodology 6
reset 66
resolved logic vector 75, 77
results checking 51

S
s1 79
sc_bigint 91
sc_biguint 91
sc_bit 84
sc_bv 93
sc_clock 63
sc_create_vdc_trace_file 157
sc_create_wif_trace_file 158
SC_CTHREAD 59
SC_CTOR 43
sc_cycle 155
sc_initialize 155
sc_int 88
sc_logic 85

operators 85
values 85

sc_lv 93, 95
sc_main 154
SC_METHOD 47, 49, 55
SC_MODULE 39
sc_signal 43, 77
sc_start 154
SC_THREAD 58
sc_uint 88

scheduler 153
steps 154

sensitive_pos 47
sensitivity list

clocked thread process 62
shift register 166, 184
signal 3, 82

event 54
timing 80
trace 157

signal assignment 72
signal binding 72, 78
signal driver 76
signal vector 77
signals

module 41
signed fixed integer 87
simulation 153, 153–157

control 154
cycle-based 3

simulation control 153
state machine 171, 189

implicit 59
struct module syntax 40
synchronizing events 80

T
testbench 2, 49

counter 50
thread process 56

sensitivity list 56
suspension 56

timing signals 80
top level module 43
trace 4

signal 157
variable 157
waveform 157

trace file
creation 157

tracing
aggregate signals 159
aggregate variables 159
scalar signals 158
scalar variables 158

SystemC 2.0 User’s Guide v

signal arrays 160
variable arrays 160

triggering a process 54
type

userdefined 16

U
unsigned fixed integer 87
user defined type 16

V
variable

local 67
trace 157

variables
local 44

VCD 4, 157
vector

signal 77
vector signal

syntax 77

W
W_BEGIN 67
W_DO 67
W_END 67
W_ESCAPE 67
wait() 56
wait_until 63

expression 63
wait_until() 63
watching 64

event handlers 68
expression 65, 66
global 67
local 67
local watching block 68
nesting local watching 68
priority 68

watching expression
data type 67
testing 66

waveform trace 4, 157
WIF 4, 157

vi SystemC 2.0 User’s Guide

	Contents
	CHAPTER 1 Introduction
	Using Executable Specifications
	SystemC Highlights
	Current System Design Methodology
	Manual Conversion from C to HDL Creates Errors
	Disconnect Between System Model and HDL Model
	Multiple System Tests

	SystemC Design Methodology
	Refinement Methodology
	Written in a Single Language

	Compatibility with Earlier Versions of SystemC

	CHAPTER 2 Starting with a Simple Example
	Simplex Data Protocol
	C/C++ Model
	SystemC Model
	User Defined Packet Type
	Transmit Module
	Channel Module
	Receiver Module
	Display Module
	Timer Module
	Putting it all together - The main routine
	Compiling the Example for UNIX
	Compiling the Example for Windows
	Executing the Example

	CHAPTER 3 Modules and Hierarchy
	Module Ports
	Module Signals
	Positional Connection
	Named Connection

	Internal Data Storage
	Processes
	Module Constructors
	TestBenches

	CHAPTER 4 Processes
	Basics
	Method Process
	Thread Processes
	Clocked Thread Process
	Wait Until
	Watching
	Local Watching
	Triggering Processes with Events

	CHAPTER 5 Ports and Signals
	Reading and Writing Ports and Signals
	Array Ports and Signals
	Resolved Logic Vectors
	Resolved Vector Signals
	Signal Binding
	Clocks

	CHAPTER 6 Data Types
	Type sc_bit
	Type sc_logic
	Fixed Precision Unsigned and Signed Integers
	Speed Issues
	Arbitrary Precision Signed and Unsigned Integer Types
	Arbitrary Length Bit Vector
	Arbitrary Length Logic Vector
	Logic Vector Speed Issues
	User Defined Type Issues
	Comparison Operator
	Tracing a User Defined Type

	CHAPTER 7 Fixed Point Types
	Word Length and Integer Word Length
	Quantization Modes
	SC_RND
	SC_RND Examples

	SC_RND_ZERO
	SC_RND_ZERO Examples

	SC_RND_MIN_INF
	SC_RND_MIN_INF Examples

	SC_RND_INF
	SC_RND_INF Examples

	SC_RND_CONV
	SC_RND_CONV Examples

	SC_TRN
	SC_TRN Examples

	SC_TRN_ZERO
	SC_TRN_ZERO Examples

	Overflow Modes
	MIN and MAX
	SC_SAT
	SC_SAT Examples

	SC_SAT_ZERO
	SC_SAT-ZERO Examples

	SC_SAT_SYM
	SC_SAT_SYM Examples

	SC_WRAP
	SC_WRAP, n_bits = 0
	SC_WRAP, n_bits = 0 Examples

	SC_WRAP, n_bits > 0
	SC_WRAP, n_bits>0 Examples

	SC_WRAP_SM
	SC_WRAP_SM, n_bits = 0
	SC_WRAP_SM, n_bits = 0 Examples

	SC_WRAP_SM, n_bits > 0
	SC_WRAP_SM, n_bits = 3 Examples

	SC_WRAP_SM, n_bits = 1
	SC_WRAP_SM, n_bits = 1 Example

	Fast Fixed Point Types
	Simple Examples
	Type sc_fxtype_params
	Type sc_fxtype_context
	Complex Context Example

	Operators
	Bit Selection
	Part Selection
	Type Casting
	Useful State Information
	Converting Fixed Point Types to Strings
	Arrays of Fixed Point Types
	Larger Example

	CHAPTER 8 Simulation and Debugging Using SystemC
	Advanced Topic: SystemC Scheduler
	Simulation Control
	Advanced Simulation Control Techniques

	Tracing Waveforms
	Creating the Trace File
	Tracing Scalar Variable and Signals
	Tracing Variables and Signals of Aggregate Type
	Tracing Variable and Signal Arrays

	Debugging SystemC

	Appendix A VHDL Designer’s Guide
	DFF Examples
	Synchronous D Flip Flop
	SystemC Implementation
	D Flip Flop with Asynchronous Reset

	Shifter
	SystemC Implementation

	Counter
	SystemC Implementation

	State Machine
	SystemC State Machine

	Memory
	SystemC Implementation

	Appendix B Verilog Designers’ Guide
	DFF Examples
	Synchronous D Flip Flop
	SystemC Implementation

	Asynchronous Reset D Flip Flop
	D Flip Flop with Asynchronous Reset
	SystemC Implementation

	Shifter
	SystemC Implementation

	Counter
	SystemC Implementation

	State Machine
	SystemC State Machine

	Memory
	SystemC Implementation

	Index

