
EECS22L: Software Engineering Project in C Lecture 2

(c) 2017 R. Doemer 1

EECS 22L: Software Engineering Project
in C Language

Lecture 2

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 2

Lecture 2: Overview

• Software Development Process
– Software architecture design

• Project 1 Introduction
– The game of chess

• Application Specification
– Customer requests, goals, requirements

– Discussion of features, options, considerations

• Technical Advise
– Suggestions for data structure organization

– Essential objects and operations

– Algorithm and control flow

– Components and task partitioning



EECS22L: Software Engineering Project in C Lecture 2

(c) 2017 R. Doemer 2

Software Development Process

• EECS 22L Software Development Process
1. Application specification

• User’s perspective (aka. client, customer, consumer)

• Documentation

2. Software architecture design and specification
• Developer’s perspective (aka. producer)

• Software layers and modules

• Documentation

3. Implementation, testing, and debugging
• Unit testing

• System testing

4. Software release
• Binary program and documentation

• Source code and documentation

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 3

Software Development Process

2. Software Architecture Design and Specification
– Goal: Specify the developer’s perspective!

• What data structures are used? What algorithms?

• What modules is the program composed of? Dependencies?

• How do the modules interact? What functions and parameters?

– Deliverable: Software Architecture Document
Detailed description of the software components and structures!

• Data structures and algorithms
– How is data organized?

– How is data processed?

• Software layers and modules
– Software architecture with layers of modules and libraries

– Application Programming Interface (API) of modules (header files!)

• Implementation plan
– Project timeline

– Tasks and team member responsibilities

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 4



EECS22L: Software Engineering Project in C Lecture 2

(c) 2017 R. Doemer 3

Software Architecture Document

• Contents of a Software Architecture Document (1/2)
– Title page

• Software title, version

• Author/producer, affiliation

– Front matter
• Table of contents

• Glossary

– Software Architecture Overview
• Introduction, goals, features

• Major software components (e.g. module hierarchy), diagrams

• Major interfaces (application programming interface), diagrams

– Installation
• System requirements, compatibility

• Setup and configuration

• Building, compilation, and installation

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 5

Software Architecture Document

• Contents of a Software Architecture Document (2/2)
– Various views on the software architecture

• Use-case view, logical view, process view, deployment view
(typically described in Unified Modeling Language, UML)

– Documentation of packages, modules, interfaces
• Detailed description of data structures

• Detailed description of functions and parameters

• Detailed description of data input and output (incl. format)

– Development plan and timeline
• Partitioning of tasks

• Timeline of development, testing, releases

– Back matter
• Copyright, contact information

• Legal, license, disclaimer of warranty

• Index, References, Appendix

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 6



EECS22L: Software Engineering Project in C Lecture 2

(c) 2017 R. Doemer 4

Project 1 Introduction

• The Game of Chess
– Board

• Initial positions

– Pieces
• Queen

• Rook

• Bishop

• Knight

• King

• Pawn

– Moves
• Capture

• Check

• Checkmate

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 7

8
7
6
5
4
3
2
1
A B C D E F G H

Application Specification

• Chess Game: Program Specification (1/3)
– Basic functions: (Customer requests, requirements)

1. Official rules of chess

2. Interactive user interface (player sees board, makes moves)

3. Interactive player (human user) vs. automatic player 
(computer)

4. User chooses the side to play, white or black

5. Human readable log file

6. Computer moves in reasonable time (less than 1 minute)

 Tournament support!

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 8



EECS22L: Software Engineering Project in C Lecture 2

(c) 2017 R. Doemer 5

Application Specification

• Chess Game: Program Specification (2/3)
– Advanced options: (Customer goals, extra features)

1. Human vs. human, computer vs. computer

2. Withdraw previous moves (undo)

3. Different computer levels: beginner, intermediate, expert

4. Hints on possible moves

5. Graphical user interface (GUI)

6. Chess clocks (timers)

7. Interactive board setup

8. Support for official algebraic notation

9. ...

– Considerations
 Illegal move ends the game. The player loses.

 Implement legal moves correctly!

Good strategy is more important than fancy features.

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 9

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 10

Technical Advise

• Data Structure Organization
 The importance of a well-defined data structure

cannot be overestimated!
• Use object-oriented approach (even in plain ANSI-C)

• Decompose into modules (manage complexity)

• Use proper terms (ensure good code readability)

• Consider efficiency

– Execution speed

– Memory size

– Good questions to ask yourself
• What are the objects at hand? (Classes)

• What operations are needed for the objects? (Methods)

• What is the overall algorithm?

• What components does the system consist of?



EECS22L: Software Engineering Project in C Lecture 2

(c) 2017 R. Doemer 6

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 11

Technical Advise

• Suggestions for Data Structure Organization (1/4)
 Essential Objects for the Chess Application

• a player (who is either black or white)

• a piece type (either king, queen, bishop, knight, rook, or pawn)

• a piece (a combination of player/color and piece type)

• a board (8x8 matrix of squares, with or without a piece on them)

• a position of a piece (known to the user as “e2”, for example)

• a move (a combination of a start and end position, e.g. “e2 e4”)

• a log (a list of moves)

 How can these basic objects be represented best?
• What ANSI C primitives can be used?

• What data structures need to be built?

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 12

Technical Advise

• Suggestions for Data Structure Organization (2/4)
 Essential Operations for the Chess Application

• on a board, lookup a piece at a given position

• on a board, put a given piece onto a given position

• on a board, move a piece from a position to another

• for a piece on the board, compute all reachable positions

• for a piece on the board, compute all legal moves

• on a board, check whether or not a player’s king is in check

• on a board, check whether or not a player’s king is in checkmate

• for a player and a given board, compute all legal moves

• from a list of moves, select the best one

• …

 How can these functions be represented best?
• What function signatures are needed?



EECS22L: Software Engineering Project in C Lecture 2

(c) 2017 R. Doemer 7

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 13

Technical Advise

• Suggestions for Data Structure Organization (3/4)
 Essential Algorithm for the Chess Application

• Overall control flow (main loop)
– setup

– display the board

– repeat

» white player makes a move

» display the board

» if black is in checkmate, white wins!

» black player makes a move

» display the board

» if white is in checkmate, black wins!

 How can the computer make a smart move?
• First, calculate all legally possible moves

• Then, pick the best one!

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 14

Technical Advise

• Suggestions for Data Structure Organization (4/4)
 Essential Components for the Chess Application

• main program

• user interface (textual and/or graphics)

• chess objects (data structures for pieces, boards, moves)

• chess rules (possible moves, legal moves)

• lists (or trees) of moves

• strategy (artificial intelligence, AI) module

• log file module

• feature modules

• documentation and testing

 How can these tasks / modules be partitioned best?
• What dependencies exist? What can be done in parallel?

• What is best done by everyone?



EECS22L: Software Engineering Project in C Lecture 2

(c) 2017 R. Doemer 8

Chess (main module)

X11 Graphics Library 
(libSDL)

Software Architecture Document

• Example: Diagram of Software Layers and Modules
– Stack of major components in the HW/SW architecture

• Application modules

• OS and third-party libraries

• Operating system (OS) infrastructure

• Hardware platform

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 15

PC Hardware (x86_64 server)

Linux OS (RHEL-6-x86_64)

Std. C (libc)Math (libm)

Strategy (AI) User Interface (GUI)

Rules (chess)

Hardware

Software

• Example: Documentation of Chess Strategy Module
– Module dependencies

• Provides: Evaluation of potential moves

• Requires: libChessRules.a, libc.a

– Exported functions
t_Move *SelectBestMove(

t_MoveList *LegalMoves,
t_Board *Board,
t_Player Color)

• Arguments:
– LegalMoves list of potential moves (which must be legal)

– Board current board position

– Color player to make the next move

• Result:
– BestMove pointer to the “smartest” move in the LegalMoves list 

• Notes:
– Returns NULL if list of LegalMoves is empty

Software Architecture Document

EECS22L: Software Engineering Project in C, Lecture 2 (c) 2017 R. Doemer 16

Chess (main)

Strategy (AI)

Rules (chess)


