
EECS22L: Software Engineering Project in C Lecture 9

(c) 2017 R. Doemer 1

EECS 22L: Software Engineering Project
in C Language

Lecture 9

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2017 R. Doemer 2

Lecture 9: Overview

• Project 2 Technical Discussion and Advise
– Software architecture and components

• Discussion on Socket Communication
– Client-server example

– Blocking I/O communication

– Multiplexing multiple connections

– Clock server example

EECS22L: Software Engineering Project in C Lecture 9

(c) 2017 R. Doemer 2

Project 2: Software Architecture

• Overall System Specification (designed by consultant)

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2017 R. Doemer 3

Configuration
City Map
Taxi Fleet

Pricing

Taxi Cab
Management Server

• Taxi fleet management
• Optimal navigation, routing
• Optimal scheduling
• Accounting of revenue and expenses
• Central data structures

Client App
Call Taxi

Client App
Call Taxi

Taxi Cab
Client App

Project 2: Client-Server Communication

• Discussion on Socket Communication
– Reference: Sockets Tutorial

• http://www.linuxhowtos.org/C_C++/socket.htm

• http://www.linuxhowtos.org/data/6/client.c

• http://www.linuxhowtos.org/data/6/server.c

– Reference: Linux manual pages
• man socket

• man select

• man select_tut

– Extended client-server example:
~eecs22/SocketTutorial.tar.gz
• client2.c

• server2.c

 This example can handle only one client at a time,
others have to wait for their turn to connect

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2017 R. Doemer 4

EECS22L: Software Engineering Project in C Lecture 9

(c) 2017 R. Doemer 3

Project 2: Client-Server Communication

• Discussion on Socket Communication
– Sequence Diagram for client-server example

 This simple example can handle only one client at a time,
others have to wait for their turn to connect (they are blocked)

 Blocking communication can stall both the client and the server!

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2017 R. Doemer 5

socket()
bind()
listen()

accept()
read()
write()

close()
exit()

Server

socket()

connect()
write()

read()
close()
exit()

Client

Project 2: Client-Server Communication

• Discussion on Socket Communication
– Handling multiple active client connections

• Option 1: Parallel/concurrent (asynchronous) I/O
– Use multiple processes (fork()) or threads (pthread_create())

– Requires Operating System (OS) knowledge (i.e. EECS 111),
and very careful programming to avoid race-conditions and deadlocks

• Option 2: Synchronous I/O multiplexing
– Wait on multiple I/O requests, handle them first-come-first-served (FCFS)
– Function select() monitors multiple file descriptors, with timeout option

 Multiplexing multiple connections with select()

– Clock server example: ~eecs22/ClockServer.tar.gz
• ClockServer.c

• ClockClient.c

• Makefile, README

 Online demonstration!

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2017 R. Doemer 6

EECS22L: Software Engineering Project in C Lecture 9

(c) 2017 R. Doemer 4

• Multiplexing multiple client connections with select()
– ClockServer example: ~eecs22/ClockServer.tar.gz

 Wait simultaneously to connect, to transfer data, or for time-out!

 Keep sequential execution short

 Limit client-server interaction to one request at a time

Project 2: Client-Server Communication

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2017 R. Doemer 7

socket()
bind()
listen()

accept() read()

write()

close()

exit()

ClockServer

socket()
connect()

write()

read()

close()

exit()

ClockClient

select()

printf()

fflush()

connect
data time-out

Project 2: Client-Server Communication

• Communication Example: “Call a Taxi from UNI to SCA”
 Reconsider: Handle one request at a time, keep sequences short!

– Client: Hello Server!

– Server: ERROR invalid message “Hello Server!”

– Client: REQUEST_POSITION Taxi7

– Server: OK Taxi7 POSITION J2 ETA D4 11:45

– Client: REQUEST_TAXI S8 TO D4 ASAP

– Server: OK Taxi7 PICKUP S8 10:15 DROPOFF D4 11:42 $8.75 CONFIRM

– Client: OK CONFIRMED

– Server: OK Taxi7 POSITION D8 ETA S8 10:15

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2017 R. Doemer 8

Possibly a long delay
for client to respond!

EECS22L: Software Engineering Project in C Lecture 9

(c) 2017 R. Doemer 5

Project 2: Client-Server Communication

• Communication Example: “Call a Taxi from UNI to SCA”
 Reconsider: Handle one request at a time, keep sequences short!

– Client: Hello Server!

– Server: ERROR invalid message “Hello Server!”

– Client: REQUEST_POSITION Taxi7

– Server: OK Taxi7 POSITION J2 ETA D4 11:45

– Client: REQUEST_TAXI S8 TO D4 ASAP

– Server: OK Taxi7 PICKUP S8 10:15 DROPOFF D4 11:42 $8.75
CONFIRM #10042

– Client: CONFIRM #10042

– Server: OK Taxi7 POSITION D8 ETA S8 10:15
 Unconfirmed requests should expire after some period

(so that there is no problem when the client doesn’t cancel the request)

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2017 R. Doemer 9

Decoupled requests
by confirmation number

Project 2: Client-Server Communication

• Protocol Specification Example (Backus-Naur Form, BNF)
– Client Request

<request> ::= REQUEST_TAXI <location> TO <location> <special>*
| REQUEST_POSITION <taxi>
| CONFIRM <reservation>
| CANCEL <reservation>

<location>::= <pos>
| CORNER <street_name> AND <street_name>
| <landmark_name>

<special> ::= [ASAP]
| [AT <time>]
| [FOR <number_persons>]
| [NON_STOP]

<time> ::= <hours>:<minutes>

– Server Response
<response>::= OK <taxi> PICKUP <pos> [<time>] DROPOFF <pos> [<time>]

$<amount> CONFIRM <reservation>
| DECLINED <reason>
| OK <taxi> POSITION <position> [ETA <position> <time>]
| INVALID <reservation>
| ERROR <message>

<amount> ::= <dollars>.<cents>

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2017 R. Doemer 10

