
EECS 22L Project 2: Taxi Cab Management

Prepared by: Delaram Amiri, Huan Chen, and Prof. Rainer Dömer

February 13, 2017

1 Cover Story
The City of New Irvine is soliciting proposals for the development of a new fully-automated taxi cab management
service that can optimally coordinate a number of taxi cabs serving the individual public transportation needs of the
population and visitors of the city.

Figure 1: Map of the City of New Irvine.

As shown in the map detailed in Figure 1 above, the City of New Irvine is planned as a grid of 26 by 42 roads
intercepted by three major land marks, namely the University of New Irvine (UNI), the international Santa Claus
Airport (SCA), and the Grand Park. For public transportation, there is also the New Irvine Train Station and three
dedicated taxi cab stands A, B, and C, strategically co-located at major destinations.

Due to its ingenious Manhattan-style street plan with blocks a quarter of a mile apart, the City of New Irvine
expects transportation by taxi to be very flexible and efficient for individual people and small groups.

1

1.1 Taxi Management Requirements and Goals
Taxi cab customers may request rides from and to every street corner within the city limits, to be served at the time
of request (i.e. as soon as possible) or at a defined later time as specified by the customer. As a goal, the majority of
taxi rides within the city limits should take less than 20 minutes, including the time the customer waits for the cab to
arrive. Of course, the posted speed limit of 45 miles per hour in the city must be strictly observed.

Three designated taxi stands are planned at strategically placed locations: Stand A at the local airport (corner of Doc
Arthur Blvd and 8th Street), Stand B at the university (Stand Fourth and 8th Street), and Stand C at the train station
(X Roads and 36th Street), as indicated in the map above. Each taxi stand provides parking for up to 12 taxi cabs. Cab
cars may be limousine or van type with an occupancy limit of 3 or 6 passengers, respectively.

The vision of the New Irvine Great Plan is to facilitate individual transportation as fairly and as easily as possible.
Specifically, the plan is to establish a central computer server where all incoming transportation requests from cus-
tomers are automatically processed and taxi drivers can fairly compete for trips and compensation. At the same time,
customers’expectations of punctuality and quick trips are to be met to the best extent possible.

The City of New Irvine has strictly regulated the cost of taxi rides. Unless a customer is picked up or dropped off
directly at a taxi stand, a base fee of $3.75 is charged. In addition, a distance dependent charge of $2.00 per mile is
applied. No tips are expected nor allowed. For calculating a fare, the minimal Manhattan distance is applied between
the start and end points of the customer's ride.

For taxi drivers, every block driven as instructed by the central server earns $0.20. This includes driving to customer
pickup and return from drop-off locations. However, waiting at a taxi stand parking lot does not earn any compensation.

All charges for taxi rides are centrally processed at the management server. Revenue may be earned from customer
payments after taxi drivers are compensated. Thus, to maximize revenue, taxi rides need to be optimally scheduled
and routed. Note that combining multiple taxi rides can increase revenue significantly as each customer pays their
ride, but drivers are compensated only for distance driven.

1.2 Management Software Specification
In order to ensure interoperability between software solutions provided by different vendors, the City of New Irvine has
conducted an early research study to determine the overall system of planned computer components and the associated
communication protocols needed to facilitate the taxi cab coordination services. A hired professional consultant has
created an initial proposal for the overall taxi management system which the City of New Irvine has now approved for
adoption.

The senior consultants proposal consists of two separate computer-based components, namely a client app to order
taxi cab rides and a central management server. This overall system architecture is outlined below in Figure 2.

1.2.1 Taxi Cab Client App

In order for customers to call for or reserve a taxi ride, an Taxi Cab Client App is planned that may be implemented on
a variety of devices, including stationary computer terminals, portable computers, and mobile phones. The application
may be web-based or come in form of specially prepared software apps, but is expected to communicate with the
central server via standard internet protocol.

The client application will guide the customer in specifying the starting point and destination of the desired taxi ride,
as well as the time for pickup and any other special requests. The complete customer request will then be sent to the
central server for processing. The generated response by the server will then be displayed to the customer in order to
confirm the trip reservation and indicate expected arrival time and costs, or decline the request (e.g. when there is no
taxi cab available).

2

Figure 2: Client Server Architecture of the envisioned Taxi Management System.

For best customer experience, the client app shall provide a graphical user interface (GUI) that shows on a map the
current location of the hired taxi cab in real-time. Thus, the waiting customer can see when the taxi is approaching
and during the ride can also follow the position live on the app until the final destination is reached.
In summary, the Taxi Cab Client App will serve as an easy-to-use customer interface to the central taxi management
system.

1.2.2 Central Taxi Cab Management Server

A central Taxi Cab Management Server will receive and process all incoming customer requests via a standard internet-
based communication protocol. Every request is expected to be processed fully automatically and an instantaneous
response (in less than a few seconds time) shall be generated. To maximize customers’satisfaction, taxi ride requests
shall be serviced quickly and trips shall be optimally routed.

To service customers’rides, the central server program will communicate automatically with autonomous devices lo-
cated in the taxi cab cars. The cab cars are location-aware (GPS based) and will respond with their current position
in the city whenever requested. It is up to the central server, however, to route the taxis to their pick-up and drop-off
locations, so that trips can be centrally optimized and possibly combined. Unless a customer has specifically requested
a first-class ride (no other parties in the cab), taxi rides may be combined (multiple parties in the cab, up to the max-
imum occupancy of the cab car) at any time in order to minimize fuel consumption, save costs, and maximize taxi
management and cab driver profit.

Taxi cabs may be routed via any street within the city limits, but must not drive through private land (i.e. the blocks
occupied by the landmark locations). For example, a taxi must not drive through the Grand Park which is reserved
exclusively for pleasure and recreation activities of City of New Irvine residents.

To avoid traffic congestion, taxi cabs are supposed to wait only at the taxi stands (in the designated parking lots for
taxis). Unless driving to service customers ride requests, taxi cabs may not wait on the city streets (no idle parking).

Generally it is important to note that taxi driving routes are to be optimized by the central server (to use the shortest
path). However, planned routes may be revised (updated) at any point in time, for example, when another customer
ride lies “on the way”. To facilitate such online scheduling and routing optimization, the central server can relay opti-
mized directions to the taxi cabs at any time (any block), indicating to continue into any direction including U-turns.
Specifically, it is assumed that, at every street corner, the server can instruct the taxi to go either North, South, East, or
West).

3

The central taxi management system shall provide a graphical user interface (GUI) that shows the current locations of
all taxi cabs and customers in real-time. The management system must also handle the accounting needed for income
(customers pay with credit cards at the time of reservation), expenses (taxi drivers must be compensated for driving,
but not for waiting), and resulting revenue (income minus expenses; see taxi revenue regulations by the City of New
Irvine above).

Each taxi cab car is equipped with a GPS-based mobile computer system that automatically tracks the current
position and can autonomously relay its location to the central server.

2 Software Specification
In this project, we want to design a software system consisting of a central server and multiple clients which can
manage a taxi company in a city, as outlined in the cover story above. The overall goal is here to service customer
requests while minimizing costs and maximizing profit.

There are several features that we expect the software system to have. We distinguish between the minimum require-
ments for this project, and more advanced options that are goals and optional features (bonus points).

2.1 Basic functions that are required:
1. Client app(s) and central server with communication via standard TCP/IP protocol

2. Service customers’ requests at their specified place and time (i.e. as soon as possible)

3. Pickup and drop-off customers at their desired locations

4. Route and schedule taxis in a city considering its roads and landmarks

5. Utilize a provided map of the target city according to a configuration file

6. Display the map using a Graphical user interface (GUI) along with current customer and taxi positions

7. Maintain accounting for the company (maintain income and expenses)

8. Unit test for all major modules in the project.

9. Well structured user/software deliverable and detailed documentation which meets the requirements specified in
the grading criteria.

2.2 Advanced options that are desirable: (optional, bonus points)
1. In addition to ”as soon as possible”, support requests to pick up customers at a specified later time

2. Clients can specify the number of passengers for each cab request (default: 1 rider)

3. A clock specifying current time can be displayed on the map

4. Expenses for the customer (client) and profit earned by the company (server) can be displayed

5. There can be a provision for ”first class” rides where passengers do not share the ride with anyone

Of course, any other useful (or fun!) features are also welcome which can make the taxi management software
more efficient or easier to use.

4

3 Software Engineering Approach
In the design and implementation of this project, we will follow basic principles of software engineering in a close-
to-real-world setting. You will practice the major tasks in software engineering to build your own software product.
Similar as for project 1, we will not provide detailed instructions on how to design the software. Instead, your team
needs to come up with your own choices and practice designing the software programs and document them.

3.1 Team work
The software design and programming in this course will be performed by student teams. Teams of 4-6 students will
be formed at the beginning of this project. Team work is an essential aspect of this class and every student needs to
contribute to the team effort. While tasks may be assigned in a team to individual members, all members eventually
share the responsibility for the project deliverables.

The overall tasks of software design, implementation and documentation should be partitioned among the team mem-
bers, for example, to be performed by individuals or pairs (pair programming). A possible separation into tasks or
program modules may include:

• client app with communication interface

• central server with communication interface

• configuration file handling (parsing and data structures)

• graphical user interface (which may be shared by both client and server)

• routing (and scheduling) taxi cabs

• managing finances (accounting of expenses and income)

• documentation, testing

When planning the team partitioning, keep in mind that certain tasks depend on others and that some tasks are best
handled by everyone together. However, for this taxi project in particular, there is a good opportunity to exploit the
fact that the overall structure of the program is component-based. The separate communicating components can easily
be implemented and tested separately. Also, dummy components, e.g. an automatic customer request generator, may
be used to test the other system components.

A team account will be provided on the EECS department Linux servers for each team to share source code, data, and
documents among the team members. Since teams will compete in the projects, sharing of files across teams is not
permitted.

Every student is expected to show up and participate in team meetings. Attendance of the weekly discussion and lab
sections is mandatory for the sake of successful team work.

3.2 Major project tasks
As for the previous project, we again go through several steps to approach this medium-sized programming project,
with some changes.

• Design the software application specification: work as a team to decide the functionalities of the software, the
input and output of the programs, and other things that describe the features of the program for the users. Again,
we will write an user manual to document this.

• Design the software architecture specification: work as a team to design the data structures, program modules,
application programming interface (API) functions between modules, and basic algorithms that will be used to
solve the problem. This will be documented again in a software specification document, but special attention
should be given to the testing plan.

5

• Build the software package: write the source code and implement the program. Each team member may be in
charge of their own module(s) and ideally work in parallel on implementation and module testing. Use Makefile
for rule-based compilation to integrate the modules from different owners. Here, will use unit testing for each
module before integration into the entire software system.

• Version control and collaboration: use a version control application, i.e. CVS (introduced in Lecture 3) to
maintain the team project documentation and source code files. Team members can synchronize their own work
with the others through the team repository located in the team account. In contrast to Project 1, the use of CVS
in Project 2 is mandatory.

• Test and debug the software: work as a team to decide the testing strategies, write automated test programs or
scripts, and debug the program when some of the test cases fail. Both unit tests and system test are needed
during software development and delivery.

• Software release: release the software package with the executable program and documentation, e.g. the
README file, user manual, etc. Release also the source code as a package for the further developers or
maintainers. In contrast to Project 1, Project 2 has 3 software releases, alpha, beta, and final release.

3.3 Deliverables
Each team needs to work together and submit one set of deliverables each week. Here is the checklist of the files the
team needs to submit and the due dates (hard deadlines).

Table 1: The Taxi Cab Project Deliverables

Week File Name File Description Due Date
1 Taxi UserManual.pdf The application specification 02/20/17 at 12:00pm
2 Taxi SoftwareSpec.pdf The software architecture specification 02/27/17 at 12:00pm
3 Taxi Alpha.tar.gz The alpha version of the Taxi program, 03/06/17 at 12:00pm

Taxi Alpha src.tar.gz including the program source code and documentation
4 Taxi Beta.tar.gz The beta version of the Taxi program, 03/13/17 at 12:00pm

Taxi Beta src.tar.gz including the program source code and documentation
5 Taxi V1.0.tar.gz The release software package for the Taxi program 03/20/17 at 12:00pm

Taxi V1.0 src.tar.gz and the program source code and documentation

Note that we do require these exact file names. If you use different file names, we will not see your files for grading.

We will separately provide detailed templates (document skeleton, table of expected contents) for the textual docu-
ments and a detailed list of contents (directory structure and expected files) for the file archives. These grading criteria
will be provided at the Projects tab of the course webpage.

3.4 Submission for grading
To submit your team’s work, you have to be logged in the server zuma or crystalcove by using your team’s
account. Also, you need to create a directory named taxi in your team account, and put all the deliverables in that
directory. Next, change the current directory to the directory containing the taxi directory. Then type the command:
% ˜eecs22/bin/turnin.sh
which will guide you through the submission process.

For each deliverable, you will be asked if you want to submit the file. Type yes or no. If you type “n” or “y” or just
plain return, they will be ignored and be taken as a no. You can use the same command to update your submitted files
until the submission deadline.

Below is an example of how you would submit your team work:

6

zuma% ls # This step is just to make sure that you are in the correct directory that contains taxi/
taxi/
zuma% /ecelib/bin/turnin22
==
EECSL 22L Winter 2017:
Project "taxi" submission for team1
Due date: Mon Feb 20 12:00:00 2017

* Looking for files:

* Taxi UserManual.pdf
==
Please confirm the following: *
"I have read the Section on Academic Honesty in the *
UCI Catalogue of Classes (available online at *
http://www.editor.uci.edu/catalogue/appx/appx.2.htm#gen0) *
and submit original work accordingly." *
Please type YES to confirm. y
==
Submit Taxi UserManual.pdf [yes, no]? y
File Taxi UserManual.pdf has been submitted
==
Summary:
==
Submitted on Mon Feb 13 21:29:31 2017
You just submitted file(s):
Taxi UserManual.pdf
zuma% _

For a binary package, we expect the user to read the documentation and run the executable program as follows:

% gtar xvzf BinaryArchive.tar.gz
% evince taxi/doc/Taxi UserManual.pdf
% taxi/bin/Taxi

For a source code package, we expect the developer to read the documentation and build the software as follows:

% gtar xvzf SourceArchive.tar.gz
% evince taxi/doc/Taxi SoftwareSpec.pdf
% cd taxi
% make
% make test
% make clean

Again, please ensure that these commands execute cleanly on your submitted packages.

7

	Cover Story
	Taxi Management Requirements and Goals
	Management Software Specification
	Taxi Cab Client App
	Central Taxi Cab Management Server

	Software Specification
	Basic functions that are required:
	Advanced options that are desirable: (optional, bonus points)

	Software Engineering Approach
	Team work
	Major project tasks
	Deliverables
	Submission for grading

	Design and Implementation Hints
	System Management Settings
	Taxi Management Communication Protocols
	Protocol for "Call Taxi"
	Protocol for "Taxi Cab"

	TCP/IP Communication via Sockets
	Time

