EECS 10: Computational Methods in Electrical and Computer Engineering Lecture 1

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Lecture 1.1: Overview

- Introduction
 - Course overview
- Introduction to Computers
 - What is a computer?
 - What is programming?
- Course administration
 - Course web pages

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

2

Introduction

- Course Contents
 - Introduction to computers
 - Introduction to structured programming
 - C, a high-level structured programming language
 - Binary data representation
 - Introduction to algorithm efficiency
 - Solving engineering problems
 - · Applications of structured programming
 - Hands-on experience
 - · Laboratory and discussion sessions

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

3

Introduction to Computers

- · What is a computer?
 - Digital device capable of executing programs
 - · performing computations
 - · making logical decisions
- What is a program?
 - Set of instructions which process data
 - input data (e.g. from keyboard, mouse, disk)
 - output data (e.g. to monitor, printer, disk)
- What is programming?
 - Creation of computer programs by use of a programming language

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

4

Introduction to Programming

Categories of programming languages

Machine languages (stream of 1's and 0's)
 Assembly languages (low-level CPU instructions)
 High-level languages (high-level instructions)

Translation of high-level languages

Interpreter (translation for each instruction)
 Compiler (translation once for all code)
 Hybrid (combination of the above)

· Types of programming languages

Functional (e.g. Lisp)

Structured (e.g. Pascal, C, Ada)Object-oriented (e.g. C++, Java, Python)

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

5

Course Administration

- Course web pages online at http://eee.uci.edu/17y/18010/
 - Instructor information
 - Course description and contents
 - Course policies and resources
 - Course schedule
 - Homework assignments
 - Course communication
 - · Message board (announcements and technical discussion)
 - Email (administrative issues)

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

6

Lecture 1.2: Overview

- · Getting started
 - Obtain your UCInetID
 - Obtain an account on the EECS servers
 - Log into the server
- · Linux system environment
 - System commands
 - Text editing

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

7

Getting Started

- Log into the server
 - Use a terminal with SSH protocol (secure shell)
 - Connect to the EECS Linux server
 - crystalcove.eecs.uci.edu
 - zuma.eecs.uci.edu
 - Authorize yourself with your UCInetID credentials
- Work in the Linux system environment
 - Linux shell prints command prompt, awaiting input
 - Type in system commands
 echo, date, 1s, cat, man, more,
 pwd, mkdir, cd, cp, mv, rm, rmdir
 - Refer to manual pages for help on commands

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

8

Linux System Environment

Linux system commands

echo print a message

date print the current date and time

list the contents of the current directory

- cat list the contents of files

more list the contents of files page by page

pwd print the path to the current working directory

mkdir create a new directory

cd change the current directory

− **cp** copy a file

- mv rename and/or move a file remove (delete) a file

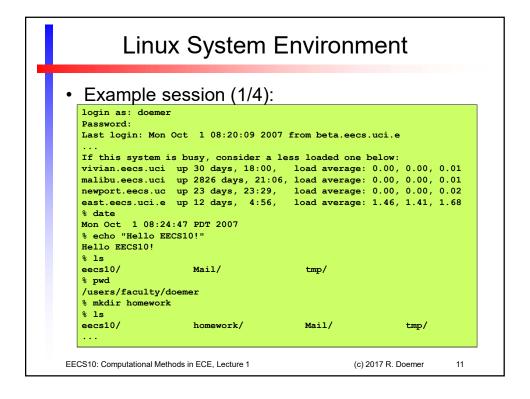
rmdir remove (delete) a directory

man view manual pages for system commands

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

9


Linux System Environment

- · Text editing
 - vi standard Unix editor
 - vim vi-improved (supports syntax highlighting)
 - pico easy-to-use text editor
 - emacs very powerful editor
 - many others...
- Pick one editor and make yourself comfortable with it!

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

10


```
Linux System Environment
  Example session (2/4):
  % cd homework
  % pwd
  /users/faculty/doemer/homework
  % mkdir hw1
  % ls
  hw1/
  % cd hw1
  % vi program.c
  % ls
  program.c
  % ls -1
                                      51 Oct 1 08:32 program.c
             1 doemer smmsp
  % more program.c
  This is my new program file.
  I don't know C yet...
EECS10: Computational Methods in ECE, Lecture 1
                                                (c) 2017 R. Doemer
```

Linux System Environment Example session (3/4): % cp program.c mybackup.c mybackup.c program.c % ls -1 -rw---- 1 doemer smmsp 51 Oct 1 08:34 mybackup.c 51 Oct 1 08:32 program.c -rw----- 1 doemer smmsp /users/faculty/doemer/homework hw1/ % ~eecs10/bin/turnin.sh EECS 10 Summer 2017: Assignment "hw1" submission for doemer Due date: Mon Jul 3 11:00:00 2017 EECS10: Computational Methods in ECE, Lecture 1 (c) 2017 R. Doemer

Linux System Environment Example session (4/4): Submit program.c [yes, no]? y Cannot read file program.c Submit mybackup.c [yes, no]? n Summary: You just submitted file(s): You have not submitted file(s): mybackup.c % ~eecs10/bin/listfiles.py EECS 10 Summer 2017: "hw1" listing for doemer Files submitted for assignment "hw1": program.c % logout EECS10: Computational Methods in ECE, Lecture 1 (c) 2017 R. Doemer

Lecture 1.3: Overview

- Introduction to Programming in C
 - History of C
 - Introduction to C
- · Our first C Program
 - Example HelloWorld.c
 - Structure of a C program
 - printf() function
 - Program compilation and execution
 - String constants

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

15

Introduction to Programming

- Categories of programming languages
 - Machine languages (stream of 1's and 0's)
 - Assembly languages (low-level CPU instructions)
 - High-level languages (high-level instructions)
- Translation of high-level languages
 - Interpreter (translation for each instruction)
 - Compiler (translation once for all code)
 - Hybrid (combination of the above)
- Types of programming languages
 - Functional (e.g. Lisp)
 - Structured (e.g. Pascal, C, Ada)
 - Object-oriented (e.g. C++, Java, Python)

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

16

History of C

- Evolved from BCPL and B
 - in the 60's and 70's
- Created in 1972 by Dennis Ritchie (Bell Labs)
 - first implementation on DEC PDP-11
 - added concept of typing (and other features)
 - development language of UNIX operating system
- "Traditional" C
 - 1978, "The C Programming Language", by Brian W. Kernighan, Dennis M. Ritchie
 - ported to most platforms
- ANSI C
 - standardized in 1989 by ANSI and OSI
 - standard updated in 1999

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

17

Introduction to C

- · What is C?
 - Programming language
 - · high-level
 - structured
 - · compiled
 - Standard library
 - · rich collection of existing functions
- Why C?
 - de-facto standard in software development
 - code is portable to many different platforms
 - supports structured and functional programming
 - easy transition to object-oriented programming
 - C++ / Java
 - freely available for most platforms

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

18

Our first C Program • Program example: HelloWorld.c /* HelloWorld.c: our first C program */ /* */ /* author: Rainer Doemer */ /* */ /* modifications: */ /* 09/28/04 RD initial version */ #include <stdio.h> /* main function */ int main(void) { printf("Hello World!\n"); return 0; } /* EOF */ EECS10: Computational Methods in ECE, Lecture 1 (c) 2017 R. Doemer 19

Our first C Program * HelloWorld.c: our first C program */ Program comments /* author: Rainer Doemer /* modifications: /* 09/28/04 RD initial version - start with /* and end with */ #include <stdio.h> - are ignored by the compiler /* main function */ - should be used to int main(void) printf("Hello World!\n"); · document the program code return 0; · structure the program code · enhance the readability #include preprocessor directive - inserts a header file into the code standard header file <stdio.h> - part of the C standard library - contains declarations of standard types and functions for data input and output (e.g. function printf()) EECS10: Computational Methods in ECE, Lecture 1 (c) 2017 R. Doemer

Our first C Program

- int main(void)
 - main function of the C program
 - the program execution starts (and ends) here
 - main must return an integer (int) value to the operating system at the end of its execution
 - · return value of 0 indicates successful completion
 - · return value greater than 0 usually indicates an error condition
- function body
 - block of code (definitions and statements)
 - starts with an opening brace ({)
 - ends with a closing brace ()
- printf() function
 - formatted output (to stdout)
- return statement
 - ends a function and returns its argument as result

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

printf("Hello World!\n");

/* main function */

return 0;

int main(void)

/* EOF */

21

Our first C Program

- Program compilation
 - compiler translates the code into an executable program
 - gcc HelloWorld.c
 - compiler reads file HelloWorld.c and creates file a.out
 - options may be specified to direct the compilation
 - -o HelloWorld specifies output file name
 - -ansi -wall specifies ANSI code with all warnings
- Program execution
 - use the generated executable as command
 - HelloWorld
 - the operating system loads the program (loader), then executes its instructions (program execution), and finally resumes when the program has terminated

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

22

Our first C Program

· Example session: HelloWorld.c

```
% mkdir HelloWorld
% cd HelloWorld
% 1s
% vi HelloWorld.c
% ls
HelloWorld.c
% ls -1
-rw-r--r-- 1 doemer faculty
                                               263 Sep 28 22:11 HelloWorld.c
% gcc HelloWorld.c
% ls -1
-rw-r-r-- 1 doemer faculty 263 Sep 28 22:11 HelloWorld.c -rwxr-xr-x 1 doemer faculty 6352 Sep 28 22:12 a.out*
% a.out
Hello World!
% gcc -Wall -ansi HelloWorld.c -o HelloWorld
% ls -1
-rwxr-xr-x 1 doemer faculty
-rw-r--r-- 1 doemer faculty
-rwxr-xr-x 1 doemer faculty
                                             6356 Sep 28 22:17 HelloWorld*
263 Sep 28 22:17 HelloWorld.c
6352 Sep 28 22:12 a.out*
% HelloWorld
Hello World!
```

Our first C Program

- Character string constants: "Strings"
 - start and end with a double quote character (")
 - may not extend over a single line
 - subsequent string constants are combined
 - text formatting using escape sequences
 - \n new line

EECS10: Computational Methods in ECE, Lecture 1

- \t horizontal tab
- \r carriage return
- \ь back space
- \a alert / bell
- \\ backslash character
- \" double quote character
- Experiments with the Helloworld program...

EECS10: Computational Methods in ECE, Lecture 1

(c) 2017 R. Doemer

(c) 2017 R. Doemer

24