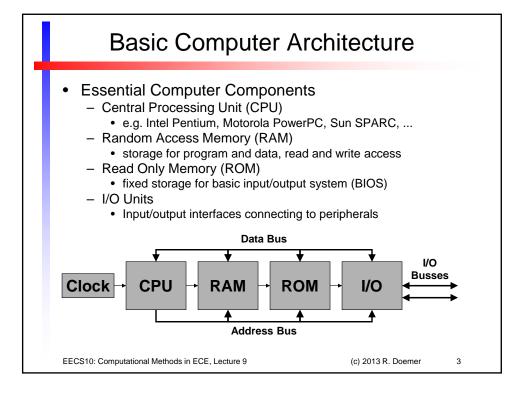
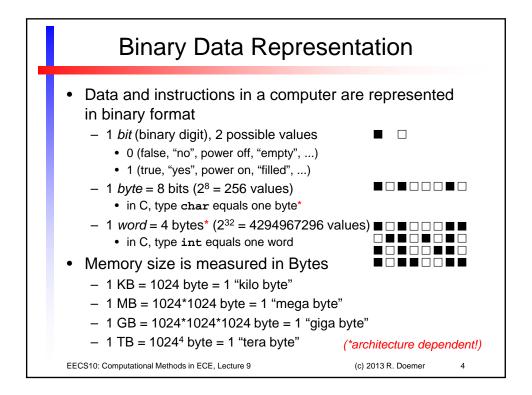
EECS 10: Computational Methods in Electrical and Computer Engineering Lecture 9

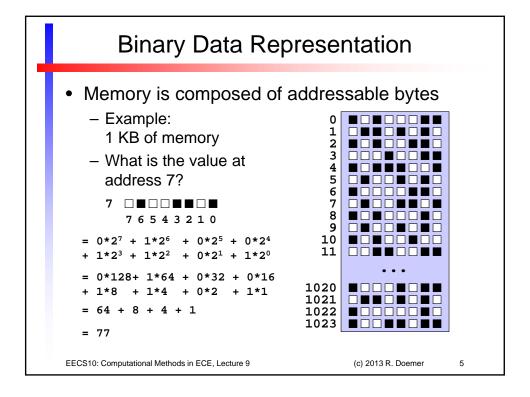
Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine


Lecture 9.1: Overview


- Basic Computer Architecture
 - Computer components
- Binary Data Representation
 - Bits, bytes, and words
 - Memory sizes
 - Memory format
 - Number systems
- Memory Organization
 - Memory segmentation
 - Objects in memory


EECS10: Computational Methods in ECE, Lecture 9

(c) 2013 R. Doemer

2

Binary Data Representation

- Review: Number Systems
 - DEC: Decimal numbers
 - Base 10, digits 0, 1, 2, 3, ..., 9
 - e.g. $157 = 1*10^2 + 5*10^1 + 7*10^0$
 - BIN: Binary numbers
 - Base 2, digits 0, 1
 - e.g. $10011101_2 = 1*2^7 + 0*2^6 + 0*2^5 + 1*2^4 + ... + 1*2^0$
 - OCT: Octal numbers
 - Base 8, digits 0, 1, 2, 3, ..., 7
 - e.g. $235_8 = 2*8^2 + 3*8^1 + 5*8^0$
 - HEX: Hexadecimal numbers
 - Base 16, digits 0, 1, 2, 3, ..., 9, A, B, C, ..., F
 - e.g. $9D_{16} = 9*16^1 + 13*16^0$

EECS10: Computational Methods in ECE, Lecture 9

(c) 2013 R. Doemer

6

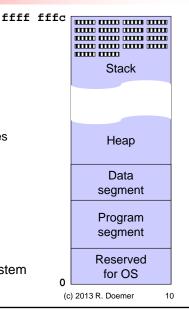
	Binary Data Representation								
T	Review: Number Systems								
	DEC	BIN	OCT	HEX					
	0	0000	0	0					
	1	0001	1	1					
	2	0010	2	2					
	3	0011	3	3					
	4	0100	4	4					
	5	0101	5	5					
	6	0110	6	6					
	7	0111	7	7					
	8	1000	10	8					
	9	1001	11	9					
	10	1010	12	A					
	11	1011	13	В					
	12	1100	14	С					
	13	1101	15	D					
	14	1110	16	E					
	15	1111	17	F					
	EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 7				7				

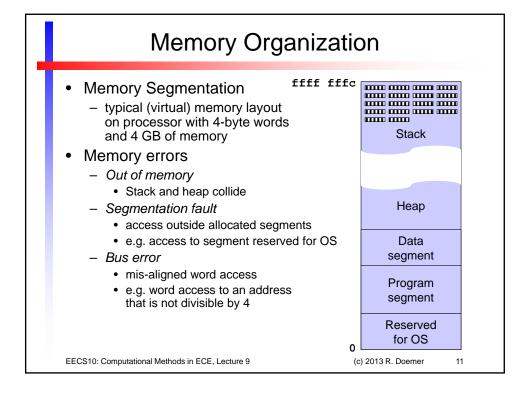
$oldsymbol{\mathbb{L}}$		Bina	ry Data	Repres	entation	
• F	Revi	ew: N	lumber Sy	stems (si	gned/unsigned	d)
SI	EC	UDEC	BIN	OCT	HEX	
	0	0	0000	0	0	
	1	1	0001	1	1	
	2	2	0010	2	2	
	3	3	0011	3	3	
	4	4	0100	4	4	
	5	5	0101	5	5	
	6	6	0110	6	6	
	7	7	0111	7	7	
	-8	8	1000	10	8	
	-7	9	1001	11	9	
	-6	10	1010	12	A	
	-5	11	1011	13	В	
	-4	12	1100	14	С	
	-3	13	1101	15	D	
	-2	14	1110	16	E	
	-1	15	1111	17	F	
EECS1	EECS10: Computational Methods in ECE, Lecture 9 (c) 2013 R. Doemer 8				8	

Binary Data Representation

- Review: Number Systems
 - Signed representation: two's complement
 - to obtain the negative of any number in binary representation, ...
 - ... invert all bits,
 - ... and add 1
 - Example: 4-bit two's complement

HEX	OCT	BIN	UDEC	SDEC
• • •	• • •	• • •	• • •	• • •
7	7	0111	7	7
8	10	1000	8	-8
9	11	1001	9	-7
• • •	• • •	• • •	• • •	• • •

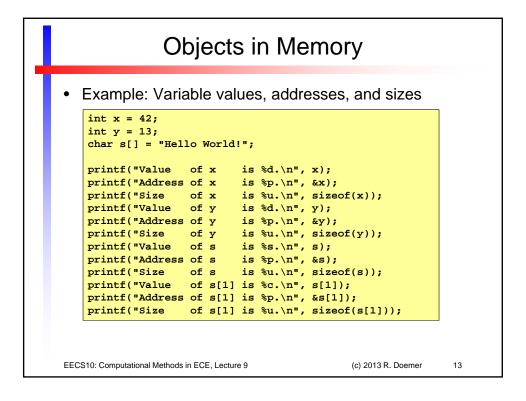

EECS10: Computational Methods in ECE, Lecture 9

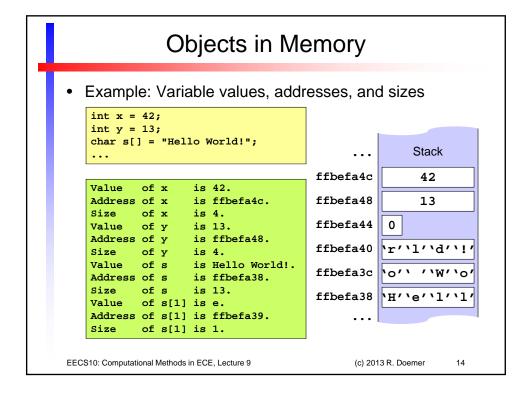

(c) 2013 R. Doemer

Memory Organization

- Memory Segmentation
 - typical (virtual) memory layout on processor with 4-byte words and 4 GB of memory
 - Stack
 - · grows and shrinks dynamically
 - · function call hierarchy
 - · stack frames with local variables
 - Heap
 - · "free" storage
 - · dynamic allocation by the user
 - Data segment
 - global (and static) variables
 - Program segment
 - · stores binary program code
 - Reserved area for operating system

EECS10: Computational Methods in ECE, Lecture 9


Objects in Memory


- Data in memory is organized as a set of objects
- Every object has ...
 - ... a type (e.g. int, double, char[5])
 - · type is known to the compiler at compile time
 - ... a value (e.g. 42, 3.1415, "text")
 - value is used for computation of expressions
 - ... a size (number of bytes in the memory)
 - in C, the sizeof operator returns the size of a variable or type
 - ... a location (address in the memory)
 - in C, the "address-of" operator (&) returns the address of an object
- Variables ...
 - ... serve as identifiers for objects
 - ... are bound to objects
 - ... give objects a name

EECS10: Computational Methods in ECE, Lecture 9

(c) 2013 R. Doemer

12

