
ECPS203: Embedded Systems Modeling and Design Lecture 10

(c) 2018 R. Doemer 1

ECPS 203
Embedded Systems Modeling and Design

Lecture 10

Rainer Dömer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 2

Lecture 10: Overview

• Course Administration
– Midterm course evaluation

• Embedded System Specification
– Essential issues
– Top-down design flow
– Specification model
– Specification modeling guidelines

• Project Discussion
– Status and next steps

– Assignment 5

– Test bench model of the Canny Edge Detector
Model development on the whiteboard

ECPS203: Embedded Systems Modeling and Design Lecture 10

(c) 2018 R. Doemer 2

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 3

Course Administration

• Midterm Course Evaluation
– One week

• Wednesday, Oct. 24, 8am – Friday, Nov. 2, 8pm

– Online via EEE+ Evaluations

• Feedback from students to instructors
– Completely voluntary

– Completely anonymous

– Very valuable
• Help to improve this class!

• Final Course Evaluation
– expected for week 10 (TBA)

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 4

Essential Issues in Model Specification

• An Example ...

Proposed by the project team Product specification Product design by senior analyst

Product after implementation Product after acceptance by user What the user wanted

Source: unknown author

ECPS203: Embedded Systems Modeling and Design Lecture 10

(c) 2018 R. Doemer 3

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 5

Top-Down Design Flow

untimed

estimated timing

timing accurate

cycle accurate

constraints
T
I

M
I
N
Gpure functional

transaction level

bus functional

RTL / IS

requirements
S
T
R
U
C
T
U
R
E

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Comp.
IP

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

RTOS
IP

RTL
IP

Architecture refinement

Capture

Communication model

Product specification

Manufacturing

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 6

Specification Model

• High-level, abstract model
– Pure system functionality

– Algorithmic behavior

– No implementation details

• No implicit structure, no architecture
– Pure behavioral hierarchy in DUT

• Untimed
– Execution in zero logical time

– Causal ordering and synchronization

• Test bench
– Stimulus, DUT, monitor

Specification model

Architecture refinement

Architecture model

Communication model

Implementation model

Communication refinement

Cycle-accurate refinement

(Adapted from A. Gerstlauer)

ECPS203: Embedded Systems Modeling and Design Lecture 10

(c) 2018 R. Doemer 4

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 7

Specification Model

• Test bench
– Top, Stimulus, Monitor

– Simulation only, no synthesis (no modeling restrictions)

• DUT
– Design under test (aka. unit under test)

– Simulation and synthesis! (restricted by modeling guidelines)

Stimulus

v2

Monitor

v1

v4

v3
Top

DUT

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 8

Specification Model

• Specification Model = “Golden” Reference Model
– First functional model in the top-down design flow
– All other models will be derived from and compared to this one

• Separation of computation and communication
– Modules and channels

• Purely functional
– Fully executable for functional validation
– No structural information (aside from test bench)

• No timing
– Exception: timing constraints

• High abstraction level
– No implementation details
– Unrestricted exploration of design space

ECPS203: Embedded Systems Modeling and Design Lecture 10

(c) 2018 R. Doemer 5

Specification Model

• Starting Point for Design Space Exploration

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 9

A
bs

tr
ac

tio
n

A
cc

ur
ac

y

Specification
Model

Refinement
Models

Implementation
Model

Design
Space

Target

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 10

Specification Modeling Guidelines

• Computation: in Modules
– Granularity: Leaf modules = smallest indivisible units

– Hierarchy: Explicit execution order
• Sequential, pipelined, or parallel

– Encapsulation: Localized variables, explicit port mappings

– Concurrency: Potential parallelism explicitly specified

– Time: Untimed (partial order and synchronization)

• Communication: in Channels
– Communication: Standard channels

– Synchronization: Standard channels

– Dependencies: Data flow explicit in connectivity

ECPS203: Embedded Systems Modeling and Design Lecture 10

(c) 2018 R. Doemer 6

ECPS 203 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a video camera of a drone

– Video taken by a drone flying over UCI Engineering Plaza
• Available on the server: ~ecps203/public/DroneFootage/

• High resolution, 2704 by 1520 pixes

• Representative sample, using 30 extracted frames for test bench model

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 11

Engineering012.png Engineering012_edges.pgm

Project Assignment 4

• Task: From Single Image to Video Stream Processing
– Prepare a sequence of image frames from the video

– Convert the Canny application to process the video frames

• Steps
1. Extract 30 of video frames suitable for use in a test bench

2. Convert the color frames to grey-scale images in PGM format

3. Recode your Canny C++ model to process the video frames
 To run Canny application successfully, increase stack size

 Adjust Canny parameters for the “best looking” output images

• Deliverables
– Source code and text file: Canny.cpp, Canny.txt

• Due
– Wednesday, October 31, 2018, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 12

ECPS203: Embedded Systems Modeling and Design Lecture 10

(c) 2018 R. Doemer 7

Project Assignment 5

• Task: Test bench for the Canny Edge Detector
– Convert C++ model to SystemC model

– Add a test bench structure around the C++ model

– Wrap DUT into a platform model with explicit I/O units

• Steps
1. Create test bench structure: Stimulus, Platform, Monitor

2. Create platform model: DataIn, DUT, DataOut
3. Localize functions and use sc_fifo channels for communication

 Pay attention to stack sizes for every thread

• Deliverables
– SystemC source code and text file: Canny.cpp, Canny.txt

• Due
– Wednesday, November 7, 2018, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 13

Project Assignment 5

• Task: Test bench for the Canny Edge Detector
– Expected instance tree

Top top

|------ Monitor monitor

|------ Platform platform

| |------ DUT canny

| |------ DataIn din

| |------ DataOut dout

| |------ sc_fifo<IMAGE> q1

| \------ sc_fifo<IMAGE> q2

|------ Stimulus stimulus

|------ sc_fifo<IMAGE> q1

\------ sc_fifo<IMAGE> q2

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 14

ECPS203: Embedded Systems Modeling and Design Lecture 10

(c) 2018 R. Doemer 8

Project Assignment 5

• Task: Test bench for the Canny Edge Detector
– Discussion on whiteboard: Top-level and Platform structure

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 15

White board photo goes here!

