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Lecture 10: Overview

• Course Administration
– Midterm course evaluation

• Embedded System Specification
– Essential issues
– Top-down design flow
– Specification model
– Specification modeling guidelines

• Project Discussion
– Status and next steps

– Assignment 5

– Test bench model of the Canny Edge Detector
Model development on the whiteboard
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Course Administration

• Midterm Course Evaluation
– One week

• Wednesday, Oct. 24, 8am – Friday, Nov. 2, 8pm

– Online via EEE+ Evaluations

• Feedback from students to instructors
– Completely voluntary

– Completely anonymous

– Very valuable
• Help to improve this class!

• Final Course Evaluation
– expected for week 10 (TBA)
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Essential Issues in Model Specification

• An Example ...

Proposed by the project team Product specification Product design by senior analyst

Product after implementation Product after acceptance by user What the user wanted

Source: unknown author
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Top-Down Design Flow
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Specification Model

• High-level, abstract model
– Pure system functionality

– Algorithmic behavior

– No implementation details

• No implicit structure, no architecture
– Pure behavioral hierarchy in DUT

• Untimed
– Execution in zero logical time

– Causal ordering and synchronization

• Test bench
– Stimulus, DUT, monitor

Specification model

Architecture refinement

Architecture model

Communication model

Implementation model

Communication refinement

Cycle-accurate refinement

(Adapted from A. Gerstlauer)
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Specification Model

• Test bench
– Top, Stimulus, Monitor

– Simulation only, no synthesis (no modeling restrictions)

• DUT
– Design under test (aka. unit under test)

– Simulation and synthesis! (restricted by modeling guidelines)

Stimulus

v2

Monitor

v1

v4

v3
Top

DUT
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Specification Model

• Specification Model = “Golden” Reference Model
– First functional model in the top-down design flow
– All other models will be derived from and compared to this one

• Separation of computation and communication
– Modules and channels

• Purely functional
– Fully executable for functional validation
– No structural information (aside from test bench)

• No timing
– Exception: timing constraints

• High abstraction level
– No implementation details
– Unrestricted exploration of design space
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Specification Model

• Starting Point for Design Space Exploration
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Specification Modeling Guidelines

• Computation: in Modules
– Granularity: Leaf modules = smallest indivisible units

– Hierarchy: Explicit execution order
• Sequential, pipelined, or parallel

– Encapsulation: Localized variables, explicit port mappings

– Concurrency: Potential parallelism explicitly specified

– Time: Untimed (partial order and synchronization)

• Communication: in Channels
– Communication: Standard channels

– Synchronization: Standard channels

– Dependencies: Data flow explicit in connectivity
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ECPS 203 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a video camera of a drone

– Video taken by a drone flying over UCI Engineering Plaza
• Available on the server: ~ecps203/public/DroneFootage/

• High resolution, 2704 by 1520 pixes

• Representative sample, using 30 extracted frames for test bench model
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Project Assignment 4

• Task: From Single Image to Video Stream Processing
– Prepare a sequence of image frames from the video

– Convert the Canny application to process the video frames

• Steps
1. Extract 30 of video frames suitable for use in a test bench

2. Convert the color frames to grey-scale images in PGM format

3. Recode your Canny C++ model to process the video frames
 To run Canny application successfully, increase stack size

 Adjust Canny parameters for the “best looking” output images

• Deliverables
– Source code and text file:  Canny.cpp, Canny.txt

• Due
– Wednesday, October 31, 2018, 6pm
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Project Assignment 5

• Task: Test bench for the Canny Edge Detector
– Convert C++ model to SystemC model

– Add a test bench structure around the C++ model

– Wrap DUT into a platform model with explicit I/O units

• Steps
1. Create test bench structure: Stimulus, Platform, Monitor

2. Create platform model: DataIn, DUT, DataOut
3. Localize functions and use sc_fifo channels for communication

 Pay attention to stack sizes for every thread

• Deliverables
– SystemC source code and text file:  Canny.cpp, Canny.txt

• Due
– Wednesday, November 7, 2018, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 10 (c) 2018 R. Doemer 13

Project Assignment 5

• Task: Test bench for the Canny Edge Detector
– Expected instance tree

Top top

|------ Monitor monitor

|------ Platform platform

|       |------ DUT canny

|       |------ DataIn din

|       |------ DataOut dout

|       |------ sc_fifo<IMAGE> q1

|       \------ sc_fifo<IMAGE> q2

|------ Stimulus stimulus

|------ sc_fifo<IMAGE> q1

\------ sc_fifo<IMAGE> q2
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Project Assignment 5

• Task: Test bench for the Canny Edge Detector
– Discussion on whiteboard: Top-level and Platform structure
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White board photo goes here!


