
ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 1

ECPS 203
Embedded Systems Modeling and Design

Lecture 17

Rainer Dömer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 2

Lecture 17: Overview

• Course Administration
• Final course evaluation

• Final report

• Project Discussion
– A7: Performance measurement on prototyping board

– A8: Back-annotation of timing estimates into SystemC model

– A8: Pipelining and parallelization of the DUT module

– A9: Throughput optimization by pipeline load balancing

• Unified Modeling Language (UML)
– Overview

– Example Diagrams

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 2

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 3

Course Administration

• Final Course Evaluation
– Open until end of 10th week (Sunday night)

– Nov. 26, 2018, through Dec. 9, 2018, 11:45pm

– Online via EEE Evaluation application

• Mandatory Evaluation of Course and Instructor
– Voluntary

– Anonymous

– Very valuable

• Please spend 5 minutes for this survey!
– Your feedback is appreciated!

Course Administration

• Final Report (in lieu of Final Exam)
– Allocated time and room for final exam

• Monday, December 10, 8:00-10:00am (DBH 1200)

Not applicable, we use electronic submission instead!

– Format: Final Project Report
• Submission script: ~ecps203/bin/turnin.sh

• Directory name: final

• Deliverables: ECPS203_Report.pdf
Canny.cpp

– A9 deadline: Draft report (for early feedback)
• Wednesday, December 5, 2018, 6pm

– Hard deadline: Final report (graded!)
• Monday, December 10, 2018, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 4

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 3

Project Assignment 7

• Task: Performance measurement on prototyping board
– Measured delays on Raspberry Pi 3 (in Canny.txt):

Gaussian_Smooth 3.53 sec

|------ Gaussian_Kernel 0.00 sec

|------ BlurX 1.71 sec

\------ BlurY 1.82 sec

Derivative_X_Y 0.48 sec

Magnitude_X_Y 1.03 sec

Non_Max_Supp 0.83 sec

Apply_Hysteresis 0.67 sec

TOTAL 6.54 sec

 This performance is far too slow for real-time video!

 Discussion: What options exist to speed this up?

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 5

Project Assignment 7

• Discussion: Measured delays on Raspberry Pi 3
– TOTAL 6.54 seconds

 This performance is far too slow
for real-time video!

 Discussion:
What options exist
to speed this up?

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 6

White board
photo goes

here!

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 4

Project Assignment 7

• Discussion: Measured delays on Raspberry Pi 3
– TOTAL 6.54 seconds

 Discussion:
What options exist
to speed this up?

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 7

White board
photo goes

here!

Project Assignment 8

• Task: Pipelining and parallelization of the DUT module
– Back-annotate estimated delays to observe timing in the model

– Pipeline and parallelize the model to improve throughput

• Steps
1. Instrument model with simulated time to observe frame delay

2. Back-annotate estimated timing into DUT components

3. Improve test bench to observe frame throughput

4. Pipeline the DUT into a sequence of 7 stages with buffer size 1

5. Slice the BlurX and BlurY modules into 4 parallel threads

• Deliverables
– Canny.cpp: pipelined and parallelized SystemC model

– Canny.txt: table of observed frame delays and throughput

• Due: Wednesday, November 28, 2018, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 8

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 5

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Discussion on whiteboard: Chart of pipelined DUT structure

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 9

White board photo goes here!

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Discussion on whiteboard: Parallel BlurX, BlurY functions (step 5)

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 10

White board
photo goes

here!

White board
photo goes

here!

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 6

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Back-annotation of measured timing delays

 4-way parallelization of BlurX and BlurY modules (step 5)

Receive, Make_Kernel 0 ms 0 ms
BlurX 1710 ms 427 ms
BlurY 1820 ms 455 ms
Derivative_X_Y 480 ms 480 ms
Magnitude_X_Y 1030 ms 1030 ms
Non_Max_Supp 830 ms 830 ms
Apply_Hysteresis 670 ms 670 ms

======= =======
TOTAL: 6540 ms 3892 ms

======= =======

Throughput: 1/1820ms 1/1030ms
0.549 FPS 0.971 FPS

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 11

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Expected execution log with timing (after step 5)

0 s: Stimulus sent frame 1.
0 s: Stimulus sent frame 2.
0 s: Stimulus sent frame 3.

[...]
3422 ms: Stimulus sent frame 16.
3892 ms: Monitor received frame 1 with 3892 ms delay.
[...]

30672 ms: Monitor received frame 27 with 15920 ms delay.
30672 ms: 1.030 seconds after previous frame, 0.971 FPS.
31702 ms: Monitor received frame 28 with 15920 ms delay.
31702 ms: 1.030 seconds after previous frame, 0.971 FPS.
32732 ms: Monitor received frame 29 with 15920 ms delay.
32732 ms: 1.030 seconds after previous frame, 0.971 FPS.
33762 ms: Monitor received frame 30 with 15920 ms delay.
33762 ms: Monitor exits simulation.

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 12

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 7

Project Assignment 8

• Task: Pipelining and parallelization of the DUT module
– Expected simulated performance values (in Canny.txt):

Model Frame Delay Throughput Total

CannyA8_step1 ... ms ... ms

CannyA8_step2 ... ms ... ms

CannyA8_step3 ... ms ... FPS ... ms

CannyA8_step4 ... ms ... FPS ... ms

CannyA8_step5 ... ms ... FPS ... ms

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 13

Project Assignment 9

• Task: Throughput optimization by pipeline load balancing
– Optimize the bottleneck stages to improve throughput

– Prepare final report

• Steps
1. Apply compiler optimizations for maximum execution speed

2. Consider fixed-point instead of floating-point arithmetic

3. Prepare draft of project report

• Deliverables
– Canny.cpp (final SystemC model, graded)

– Canny.txt (extended performance table, graded)

– Canny.pdf (draft report, reviewed but not graded)

• Due
– Wednesday, December 5, 2018, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 14

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 8

Project Assignment 9

• Step 1: Apply compiler optimizations
to reduce execution time

– Experiment with various compiler options, including:

–O2

–O3

-mfloat-abi=hard

-fmpu=neon-fp-armv8

–mneon-for-64bits

– Refer to documentation on
• GNU compiler

• ARMv8 Cortex-A53

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 15

Project Assignment 9

• Step 2: Consider fixed-point calculations
instead of floating-point arithmetic

– Focus on Non_Max_Supp module only

– Convert float type variables to int types

– Replace these lines of code…
xperp = -(gx = *gxptr)/((float)m00);

yperp = (gy = *gyptr)/((float)m00);

– … with this code
gx = *gxptr;

gy = *gyptr;

xperp = -(gx<<16)/m00;

yperp = (gy<<16)/m00

– Measure the timing difference on the prototyping board
– Measure and evaluate the image quality (ImageDiff)

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 16

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 9

Project Optimization Chart

• Optimizations and their Effect on Throughput
– Chart to visualize optimizations applied in assignments

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 17

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 18

Final Project Report

• Technical Report about the Course Project
– Title

• Modeling of a Canny Edge Detector
for Embedded Systems Design

– Contents

• “Story” of the Canny Edge Detector project
– From downloading the initial C reference code

– Via modeling and simulating in SystemC

– To performance optimization for real-time video

• Describe relevant project assignments 1 through 9

• Focus on the reasoning behind the optimizations

– Length
• About 12 pages (including title page, figures, and bibliography)

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 10

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 19

Final Project Report

1. Title page
• Project title, author, date, course number and title
• Abstract

2. Introduction
• Embedded system modeling and design concepts
• The IEEE SystemC language

3. Case Study of a Canny Edge Detector for Real-time Video
• Structure of the Canny edge detection algorithm
• Modeling and simulation in IEEE SystemC
• Model refinement for pipelining and parallelization
• Performance estimation and throughput optimization
• Real-time video performance results

4. Summary and Conclusion
• Lessons learned
• Future work

5. References

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 20

Unified Modeling Language (UML)

• Goals
– Raising the level of abstraction
– Modeling of software applications

 before coding!
– Specification of software architecture
– Enabling

• scalability
• security
• robustness
• maintenance
• extendability
• code reuse

– Model Driven Architecture (MDA)

• Status
– UML 2.0: Modeling Language in Software Engineering
– standardized by OMG (Object Management Group) in 1997
– standardized by ISO (Intl. Org. for Standardization) in 2005

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 11

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 21

Unified Modeling Language (UML)

• What is UML?
– Graphical representation of …

• Software architecture
• Software structure
• Software behavior
• Object relations
• ...

– 13 standard diagrams
• Specification
• Design
• Documentation

 Not executable!
– Commercial tools available for …

• Graphical capture
• Editing
• Code generation (template code)

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 22

Unified Modeling Language (UML)

• UML Standard Diagrams
– Structure Diagrams

• Class Diagram
• Object Diagram
• Component Diagram
• Composite Structure Diagram
• Package Diagram
• Deployment Diagram

– Behavior Diagrams
• Use Case Diagram
• Activity Diagram
• State Machine Diagram

– Interaction Diagrams
• Sequence Diagram
• Communication Diagram
• Timing Diagram
• Interaction Overview Diagram

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 12

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 23

Unified Modeling Language (UML)

• UML Resources
– Online Documents

• Object Management Group (OMG)
– www.uml.org

– Online Tutorials
– https://www.tutorialspoint.com/uml/

– http://www.sparxsystems.com/uml-tutorial.html

– Invited Talk at UCI in 2004
• Dr. Wolfgang Mueller, C-LAB, Paderborn, Germany

• Source of the following UML diagram examples

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 24

Unified Modeling Language (UML)

• Class Diagram Example

(source:
W. Mueller)

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 13

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 25

Unified Modeling Language (UML)

• Package Diagram Example

(source:
W. Mueller)

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 26

Unified Modeling Language (UML)

(source:
W. Mueller)

• Component Diagram Example

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 14

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 27

Unified Modeling Language (UML)

(source:
W. Mueller)

• Composite Structure Diagram Example

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 28

Unified Modeling Language (UML)

(source:
W. Mueller)

• Deployment Diagram Example

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 15

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 29

Unified Modeling Language (UML)

• Activity Diagram Example

(source:
W. Mueller)

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 30

Unified Modeling Language (UML)

• Activity Diagram Example with “swim lanes”

(source:
W. Mueller)

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 16

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 31

Unified Modeling Language (UML)

(source:
W. Mueller)

• Sequence Diagram Example

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 32

Unified Modeling Language (UML)

• Use Case Diagram Examples

(source:
W. Mueller)

ECPS203: Embedded Systems Modeling and Design Lecture 17

(c) 2018 R. Doemer 17

ECPS203: Embedded Systems Modeling and Design, Lecture 17 (c) 2018 R. Doemer 33

Unified Modeling Language (UML)

(source:
W. Mueller)

• State Machine Diagram Examples

