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Lecture 2: Overview

* Embedded System Design
— Complexity challenges
— Abstraction Levels
— Top-down Design Flow
» Abstract Modeling of Embedded Systems
— Models of Computation
— System-Level Description Languages
» Separation of Concerns
— Computation vs. Communication
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Embedded System Design

« Embedded System Cyber-Physical System
in CPS context Sensors Embedded Actuators
— Software s
— Hardware
» Design Challenges 4
System Gap

— Hardware design gap
— Software design gap

— System design gap <@
W SW Gap

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer

Abstraction Levels

+ Embedded system design faces tremendous
increase in design complexity
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Abstraction Levels

+ Embedded system design faces tremendous

increase of design complexity
> Move to higher levels of abstraction!
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Top-Down Design Flow
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Top-Down Design Flow

Product features
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Abstract Modeling

» Model of Computation

— Formal description of a system model
at high abstraction level
> Specification
» Documentation
» Reasoning
» Validation
» Synthesis

» Models for Hardware and Software design

— State-based models of computation
+ from Finite State Machine (FSM)
» to Program State Machine (PSM)
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Models of Computation

+ Finite State Machine (FSM)
— Basic model for describing control
— States and state transitions
« FSM=<S§, 1,0, f, h>
— Two types:
* Mealy-type FSM (input-based)
* Moore-type FSM (state-based)

FSM model
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Models of Computation
N Finite State Machine (FSM)
i « Data Flow Graph (DFG)
g — Basic model for describing computation
| — Directed graph (acyclic)
* Nodes: operations
» Edges: data flow, dependency of operations
DFG model
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Models of Computation

* Finite State Machine (FSM)
» Data Flow Graph (DFG)

* Finite State Machine with Data (FSMD)

— Combined model for control and computation
*» FSMD = FSM + DFG

— Implementation: controller plus data path (RTL processor)

=

FSMD model
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Models of Computation

Finite State Machine (FSM)

Data Flow Graph (DFG)

Finite State Machine with Data (FSMD)
Super-State FSM with Data (SFSMD)

— FSMD with complex, multi-cycle states
» States described by procedures in a programming language

a = 42;
b=a*2;
for(c=0; c<100; c++)
{b=c+ a;
if (b < 0)
b = -b;

else
:|'> b=b+1;

a=b * 10;
}

a = 42;
while (a<100)
{b=Db+ a;
if (b > 50)
c=c+d;

SFSMD model
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Models of Computation

* Finite State Machine (FSM)

» Data Flow Graph (DFG)

* Finite State Machine with Data (FSMD)
» Super-State FSM with Data (SFSMD)

» Hierarchical Concurrent FSM (HCFSM)

— FSM extended with hierarchy and concurrency
» Multiple FSMs composed hierarchically and in parallel
— Example: Statecharts

HCFSM model i
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Models of Computation

+ Finite State Machine (FSM)

+ Data Flow Graph (DFG)

+ Finite State Machine with Data (FSMD)
+ Super-State FSM with Data (SFSMD)

* Hierarchical Concurrent FSM (HCFSM)
* Program State Machine (PSM)

— HCFSMD plus programming language

» States described by procedures a = 42;
in a programming language "‘{‘i;e (;<1°°)
= a;
— Example: SpecC if (b > 50)
c=c+d;
else
PSM model c=c+e;
a=c;
}
N—
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System-Level Description Languages

* Goals and Requirements

ECPS203: Embedded Systems Modeling and Design, Lecture 2

Formality

* Formal syntax and semantics
Executability

« Validation through simulation
Synthesizability

* Implementation in HW and/or SW

» Support for IP reuse
Modularity

* Hierarchical composition

» Separation of concepts
Completeness

» Support for all concepts found in embedded systems
Orthogonality

» Orthogonal constructs for orthogonal concepts
Simplicity

¢ Minimality
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System-Level Description Languages

* Requirements supported by existing languages
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System-Level Description Languages

]
% * Requirements supported by existing languages
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O not supported D partially supported
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System-Level Description Languages

« Examples of Languages in Use Today
— C/C++
* ANSI standard programming languages, software design
« Initially used for system design because of availability, practicality
— SystemC
» |EEE standard 1666-2011 (initially created at UCI, standardized by OSCI)
e C++ library and application programming interface (API)
— SpecC
» SLDL with compiler, based on the ANSI C language standard
» Designed and built at UCI, promoted by SpecC Technology Open Consortium
— Matlab
» Algorithm design, specification and simulation in engineering
- UML
» Unified Modeling Language, graphical software specification and engineering
— SystemVerilog
» Verilog with C extensions
- SDL
» Telecommunication standard by ITU, used in COSMOS
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System-Level Description Languages

+ Examples of Languages in Use Today, Course Coverage
— C/C++
» ANSI standard programming languages, software design
« Initially used for system design because of availability, practicality
SystemC
» |EEE standard 1666-2011 (initially created at UCI, standardized by OSCI)
» C++ library and application programming interface (API)
» SpecC (concepts!)
» SLDL with compiler, based on the ANSI C language standard
» Designed and built at UCI, promoted by SpecC Technology Open Consortium
Matlab
« Algorithm design, specification and simulation in engineering
- UML
» Unified Modeling Language, graphical software specification and engineering
SystemVerilog
» Verilog with C extensions
— SDL
» Telecommunication standard by ITU, used in COSMOS

Y
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Separation of Concerns

» Fundamental Principle in Modeling of Systems
» Clear separation of concerns
> address separate issues independently
» System-Level Description Language (SLDL)
— Orthogonal concepts
— Orthogonal constructs

« System-level Modeling
— Computation
» encapsulated in modules / behaviors

— Communication
* encapsulated in channels
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Computation vs. Communication

» Traditional model P1 o P2
— Processes and signals (—

[s2] —
=

(I

— VHDL example:

entity Pl [..] process [..]
sT <=]'1
sZ <=

X ]
< o
|
I of|
X (=3
k]
+ ||t
I _
IR -
* 2]
W)

"event and s3 = "17;]

s2 <= "0";
= Y
ST <=|xy;
s2 <=
[wait until s3’event and s3 = "17;]
sl <= '0";
s2 <= '0";

» Mixture of computation and communication
» Automatic replacement impossible!
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Computation vs. Communication

* SpecC model

— Behaviors and
channels

— SpecC example:

I .
: el
—

behavior Bl [..]
{

c.send (1) ;

Xy = x + 2 * y;

c.send(xy) ;

channel C1 [..]

{ send (int d)
{ vl = d;

notify e2;
wait e3;

}
[...]
}

vl = 0;
[.1
! v 4
> Clear separation of computation and communication
» Plug-and-play!
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! Computation vs. Communication
g .
§ ° Traditional model P1 o P2
| — —
| — (s2] =
8 \= (s3] —

— Processes and signals

— Mixture of computation and communication
» Automatic replacement impossible

* SpecC model

.

— Behaviors and channels
— Separation of computation and communication

» Plug-and-play
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Computation vs. Communication

+ System Model

> Specification
> Validation
» Exploration

* Implementation Model

» Synthesis

_-_
_-_

» Computation in behaviors
¢« Communication in channels

B1

» e.g. Verilog, VHDL,
or SystemC

B2
[v]

=

» Channel disappears, signals get exposed
» Communication protocol is inlined into behaviors

B

T

Y

— SystemC example:

SC_MODULE (M1)
{ [..]
c.send (1) ;

c.send (xy) ;

Xy = x + 2 * y;

4

SC_CHANNEL (C1)
{ ]

send (int d)

{ vl = d;
e2.notify () ;
wait(e3);

}

[

}
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! Computation vs. Communication
= + Communication Protocol Inlining
|
| B1 B2
|

SC_MODULE (M1)
0 [l
vl = 1;

l wait (e3);
vl = xy;
wait (e3);

vl = 0;
[..]1}

e2.notify ()

e2.notify ()

Xy = x + 2 * y;
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