ECPS203: Embedded Systems Modeling and Design

ECPS 203
Embedded Systems Modeling and Design
Lecture 2

Rainer Domer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

™w, CENTER FOR - =".
. . EMBEDDED AND o
" CYBER-PHYSICAL H Ucl University of
California, Irvine

™ SYSTEMS

Lecture 2: Overview

* Embedded System Design
— Complexity challenges
— Abstraction Levels
— Top-down Design Flow
» Abstract Modeling of Embedded Systems
— Models of Computation
— System-Level Description Languages
» Separation of Concerns
— Computation vs. Communication

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 2

(c) 2018 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

Embedded System Design

« Embedded System Cyber-Physical System
in CPS context Sensors Embedded Actuators
— Software s
— Hardware
» Design Challenges 4
System Gap

— Hardware design gap
— Software design gap

— System design gap <@
W SW Gap

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer

Abstraction Levels

+ Embedded system design faces tremendous
increase in design complexity

Level Number of components
1E0
System
1E1
Algorithm 1E2 c
) Iy
1E3 ki 4]
RTL = .E 3
5]
k-]
2 <
Gate / i \
/ 120 \
Transistor / 1E7 \
ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer

(c) 2018 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

Abstraction Levels

+ Embedded system design faces tremendous

increase of design complexity
> Move to higher levels of abstraction!

Level Number of components

1E0
System level
1E1

Algorithm 1E2

m
©
Abstraction
Accuracy

- A\
1E7 \
\

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer

Top-Down Design Flow

—

= unstructured High abstraction untimed 4+

[—
Increasing
Structure Implementation Timing

Detail

=T physical layout real time +

Structure Low abstraction Timing
ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer

(c) 2018 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

Top-Down Design Flow

Product features

Specification
model
Architecture
model
Communication
model

=+ requirements

=T pure functional

= transaction level

= bus functional

constraints -

untimed T

estimated timing 4

timing accurate

Implementation
+ RTL/IS P cycle accurate <
model
Structure Manufacturing Timing
ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 7
! Top-Down Design Flow
S . Product specification . T
T T requirements 1 constraints - |
R — M
| Capture Alﬁ:or.
V] |
Cc N
T =T pure functional Specification model untimed G
V]
R —
| Architecture refinement
E IP
=+ transaction level Architecture model estimated timing
-
| Communication refinement
= bus functional timing accurate -
R-TL Hardwa(e Interfacg Softwarg R-TOS
synthesis | synthesis | synthesis P
T+ RTL/IS T estian eeG] cycle accurate o
Manufacturing
ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 8

(c) 2018 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

Abstract Modeling

» Model of Computation

— Formal description of a system model
at high abstraction level
> Specification
» Documentation
» Reasoning
» Validation
» Synthesis

» Models for Hardware and Software design

— State-based models of computation
+ from Finite State Machine (FSM)
» to Program State Machine (PSM)

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 9

Models of Computation

+ Finite State Machine (FSM)
— Basic model for describing control
— States and state transitions
« FSM=<S§, 1,0, f, h>
— Two types:
* Mealy-type FSM (input-based)
* Moore-type FSM (state-based)

FSM model

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 10

(c) 2018 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design Lecture 2

Models of Computation
N Finite State Machine (FSM)
i « Data Flow Graph (DFG)
g — Basic model for describing computation
| — Directed graph (acyclic)
* Nodes: operations
» Edges: data flow, dependency of operations
DFG model
ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 1

Models of Computation

* Finite State Machine (FSM)
» Data Flow Graph (DFG)

* Finite State Machine with Data (FSMD)

— Combined model for control and computation
*» FSMD = FSM + DFG

— Implementation: controller plus data path (RTL processor)

=

FSMD model

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 12

(c) 2018 R. Doemer 6

ECPS203: Embedded Systems Modeling and Design

Models of Computation

Finite State Machine (FSM)

Data Flow Graph (DFG)

Finite State Machine with Data (FSMD)
Super-State FSM with Data (SFSMD)

— FSMD with complex, multi-cycle states
» States described by procedures in a programming language

a = 42;
b=a*2;
for(c=0; c<100; c++)
{b=c+ a;
if (b < 0)
b = -b;

else
:|'> b=b+1;

a=b * 10;
}

a = 42;
while (a<100)
{b=Db+ a;
if (b > 50)
c=c+d;

SFSMD model

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 13

Models of Computation

* Finite State Machine (FSM)

» Data Flow Graph (DFG)

* Finite State Machine with Data (FSMD)
» Super-State FSM with Data (SFSMD)

» Hierarchical Concurrent FSM (HCFSM)

— FSM extended with hierarchy and concurrency
» Multiple FSMs composed hierarchically and in parallel
— Example: Statecharts

HCFSM model i

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 14

(c) 2018 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

Models of Computation

+ Finite State Machine (FSM)

+ Data Flow Graph (DFG)

+ Finite State Machine with Data (FSMD)
+ Super-State FSM with Data (SFSMD)

* Hierarchical Concurrent FSM (HCFSM)
* Program State Machine (PSM)

— HCFSMD plus programming language

» States described by procedures a = 42;
in a programming language "‘{‘i;e (;<1°°)
= a;
— Example: SpecC if (b > 50)
c=c+d;
else
PSM model c=c+e;
a=c;
}
N—
ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 15

System-Level Description Languages

* Goals and Requirements

ECPS203: Embedded Systems Modeling and Design, Lecture 2

Formality

* Formal syntax and semantics
Executability

« Validation through simulation
Synthesizability

* Implementation in HW and/or SW

» Support for IP reuse
Modularity

* Hierarchical composition

» Separation of concepts
Completeness

» Support for all concepts found in embedded systems
Orthogonality

» Orthogonal constructs for orthogonal concepts
Simplicity

¢ Minimality

(c) 2018 R. Doemer 16

(c) 2018 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

System-Level Description Languages

* Requirements supported by existing languages
4. [y ()}
A CX S 2
o N\ %\, %, \ %, %’o,} %, %o,
(3 AQC‘ 9% e% Q
Behavioral
hierarchy
Structural
hierarchy
Concurrency

Synchronization

Exception
handling

Timing
State
transitions
Composite
data types

00800 -~

©00®0000
©00 0000
~“0000000
0O®0eee0
Cemme00®
0e0~00000
00000000

O
[J
®
®
O
®
O
®
[D)

O not supported partially supported . supported

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 17

System-Level Description Languages

]
% * Requirements supported by existing languages
| |
| 4. S D
n % 0, L)
N o C\xX c{?% LG,}/O ‘9»0,% 9}&06 Qooé %@o J@,&%
o »@o «9% e,?& (& o
Behavioral
hierarchy
Structural
hierarchy
Concurrency

Synchronization

Exception
handling

Timing

00 @0000
coe®®00 4
00000000
~a0000000
0O®0eee0
cemm=e00 @
00~00000

State
transitions
Composite
data types

@OOS®O0OO0
00000000
00000000

. supported

(c) 2018 R. Doemer 18

O not supported D partially supported

ECPS203: Embedded Systems Modeling and Design, Lecture 2

(c) 2018 R. Doemer

Lecture 2

ECPS203: Embedded Systems Modeling and Design

System-Level Description Languages

« Examples of Languages in Use Today
— C/C++
* ANSI standard programming languages, software design
« Initially used for system design because of availability, practicality
— SystemC
» |EEE standard 1666-2011 (initially created at UCI, standardized by OSCI)
e C++ library and application programming interface (API)
— SpecC
» SLDL with compiler, based on the ANSI C language standard
» Designed and built at UCI, promoted by SpecC Technology Open Consortium
— Matlab
» Algorithm design, specification and simulation in engineering
- UML
» Unified Modeling Language, graphical software specification and engineering
— SystemVerilog
» Verilog with C extensions
- SDL
» Telecommunication standard by ITU, used in COSMOS

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 19

System-Level Description Languages

+ Examples of Languages in Use Today, Course Coverage
— C/C++
» ANSI standard programming languages, software design
« Initially used for system design because of availability, practicality
SystemC
» |EEE standard 1666-2011 (initially created at UCI, standardized by OSCI)
» C++ library and application programming interface (API)
» SpecC (concepts!)
» SLDL with compiler, based on the ANSI C language standard
» Designed and built at UCI, promoted by SpecC Technology Open Consortium
Matlab
« Algorithm design, specification and simulation in engineering
- UML
» Unified Modeling Language, graphical software specification and engineering
SystemVerilog
» Verilog with C extensions
— SDL
» Telecommunication standard by ITU, used in COSMOS

Y

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 20

(c) 2018 R. Doemer

Lecture 2

10

ECPS203: Embedded Systems Modeling and Design

Separation of Concerns

» Fundamental Principle in Modeling of Systems
» Clear separation of concerns
> address separate issues independently
» System-Level Description Language (SLDL)
— Orthogonal concepts
— Orthogonal constructs

« System-level Modeling
— Computation
» encapsulated in modules / behaviors

— Communication
* encapsulated in channels

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 21

Computation vs. Communication

» Traditional model P1 o P2
— Processes and signals (—

[s2] —
=

(I

— VHDL example:

entity Pl [..] process [..]
sT <=]'1
sZ <=

X]
< o
|
I of|
X (=3
k]
+ ||t
I _
IR -
* 2]
W)

"event and s3 = "17;]

s2 <= "0";
= Y
ST <=|xy;
s2 <=
[wait until s3’event and s3 = "17;]
sl <= '0";
s2 <= '0";

» Mixture of computation and communication
» Automatic replacement impossible!

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 22

(c) 2018 R. Doemer

Lecture 2

11

ECPS203: Embedded Systems Modeling and Design

Computation vs. Communication

* SpecC model

— Behaviors and
channels

— SpecC example:

I .
: el
—

behavior Bl [..]
{

c.send (1) ;

Xy = x + 2 * y;

c.send(xy) ;

channel C1 [..]

{ send (int d)
{ vl = d;

notify e2;
wait e3;

}
[...]
}

vl = 0;
[.1
! v 4
> Clear separation of computation and communication
» Plug-and-play!
ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 23
! Computation vs. Communication
g .
§ ° Traditional model P1 o P2
| — —
| — (s2] =
8 \= (s3] —

— Processes and signals

— Mixture of computation and communication
» Automatic replacement impossible

* SpecC model

.

— Behaviors and channels
— Separation of computation and communication

» Plug-and-play

ECPS203: Embedded Systems Modeling and Design, Lecture 2

(c) 2018 R. Doemer

N
F

(c) 2018 R. Doemer

Lecture 2

12

ECPS203: Embedded Systems Modeling and Design

Computation vs. Communication

+ System Model

> Specification
> Validation
» Exploration

* Implementation Model

» Synthesis

-
-

» Computation in behaviors
¢« Communication in channels

B1

» e.g. Verilog, VHDL,
or SystemC

B2
[v]

=

» Channel disappears, signals get exposed
» Communication protocol is inlined into behaviors

B

T

Y

— SystemC example:

SC_MODULE (M1)
{ [..]
c.send (1) ;

c.send (xy) ;

Xy = x + 2 * y;

4

SC_CHANNEL (C1)
{]

send (int d)

{ vl = d;
e2.notify () ;
wait(e3);

}

[

}

ECPS203: Embedded Systems Modeling and Design, Lecture 2

ECPS203: Embedded Systems Modeling and Design, Lecture 2 (c) 2018 R. Doemer 25
! Computation vs. Communication
= + Communication Protocol Inlining
|
| B1 B2
|

SC_MODULE (M1)
0 [l
vl = 1;

l wait (e3);
vl = xy;
wait (e3);

vl = 0;
[..]1}

e2.notify ()

e2.notify ()

Xy = x + 2 * y;

(c) 2018 R. Doemer

26

(c) 2018 R. Doemer

Lecture 2

13

