
ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2018 R. Doemer 1

ECPS 203
Embedded Systems Modeling and Design

Lecture 8

Rainer Dömer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 2

Lecture 8: Overview

• Course Administration
– Midterm course evaluation

• SystemC Simulation Semantics
– Motivating Examples

– Discrete Event Simulation Algorithm

• Project Discussion
– Status and next steps

– Assignment 4

ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2018 R. Doemer 2

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 3

Course Administration

• Midterm Course Evaluation
– One week, starting today!

• Wednesday, Oct. 24, 8am – Tuesday, Oct. 30, 8pm

– Online via EEE+ Evaluations

• Feedback from students to instructors
– Completely voluntary

– Completely anonymous

– Very valuable
• Help to improve this class!

• Final Course Evaluation
– expected for week 10 (TBA)

• Motivating Example 1
– Given:

– What is the value of x at the end of simulation?

– Answer: x = 6

void Top::th2(void)
{

x = 6;
};

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 4

SystemC Simulation Semantics

SC_MODULE(Top)
{

int x;

void th1(void);
void th2(void);

SC_CTOR(Top)
{ th1();

th2();
}

};

void Top::th1(void)
{

x = 5;
};

ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2018 R. Doemer 3

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 5

SystemC Simulation Semantics

• Motivating Example 2
– Given:

– What is the value of x at the end of simulation?

– Answer: The model is non-deterministic!
x may have the value 5 or 6.

void Top::th2(void)
{

x = 6;
};

SC_MODULE(Top)
{

int x;

void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);

SC_THREAD(th2);
}

};

void Top::th1(void)
{

x = 5;
};

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 6

SystemC Simulation Semantics

• Motivating Example 3
– Given:

– What is the value of x at the end of simulation?

– Answer: x = 5

void Top::th2(void)
{

x = 6;
};

SC_MODULE(Top)
{

int x;

void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);

SC_THREAD(th2);
}

};

void Top::th1(void)
{

wait(10, SC_NS);
x = 5;

};

ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2018 R. Doemer 4

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 7

SystemC Simulation Semantics

• Motivating Example 4
– Given:

– What is the value of x at the end of simulation?

– Answer: The model is non-deterministic!
x may have the value 5 or 6.

void Top::th2(void)
{

wait(10, SC_NS);
x = 6;

};

SC_MODULE(Top)
{

int x;

void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);

SC_THREAD(th2);
}

};

void Top::th1(void)
{

wait(10, SC_NS);
x = 5;

};

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 8

SystemC Simulation Semantics

• Motivating Example 5
– Given:

– What is the value of x at the end of simulation?

– Answer: The model is non-deterministic!
x may have the value 5 or 6
(immediate notification may get lost!)

void Top::th2(void)
{

wait(e);
x = 6;

};

SC_MODULE(Top)
{

int x;
sc_event e;
void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);

SC_THREAD(th2);
}

};

void Top::th1(void)
{

x = 5;
e.notify();

};

ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2018 R. Doemer 5

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 9

SystemC Simulation Semantics

• Motivating Example 6
– Given:

– What is the value of x at the end of simulation?

– Answer: x = 6

void Top::th2(void)
{

wait(e);
x = 6;

};

SC_MODULE(Top)
{

int x;
sc_event e;
void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);

SC_THREAD(th2);
}

};

void Top::th1(void)
{

x = 5;
e.notify(

SC_ZERO_TIME);
};

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 10

SystemC Simulation Semantics

• Motivating Example 7
– Given:

– What is the value of x at the end of simulation?

– Answer: x = 6

void Top::th2(void)
{

wait(e);
x = 6;

};

SC_MODULE(Top)
{

int x;
sc_event e;
void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);

SC_THREAD(th2);
}

};

void Top::th1(void)
{

e.notify(
SC_ZERO_TIME);

x = 5;
};

ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2018 R. Doemer 6

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 11

SystemC Simulation Semantics

• Motivating Example 8
– Given:

– What is the value of x at the end of simulation?

– Answer: x = 6

void Top::th2(void)
{

wait(e);
x = 6;

};

SC_MODULE(Top)
{

int x;
sc_event e;
void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);

SC_THREAD(th2);
}

};

void Top::th1(void)
{

wait(10, SC_NS);
x = 5;
e.notify(

SC_ZERO_TIME);
};

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 12

SystemC Simulation Semantics

• Motivating Example 9
– Given:

– What is the value of x at the end of simulation?

– Answer: x = 5
Thread th2 never completes,
notified event e expires and is lost!

void Top::th2(void)
{

wait(10, SC_NS);
wait(e);
x = 6;

};

SC_MODULE(Top)
{

int x;
sc_event e;
void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);

SC_THREAD(th2);
}

};

void Top::th1(void)
{

x = 5;
e.notify(

SC_ZERO_TIME);
};

ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2018 R. Doemer 7

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 13

SystemC Simulation Semantics

• Discrete Event Simulation (DES) Algorithm
– described in SystemC LRM (but noted in a different format)

 abstract definition defines a set of valid implementations

 intentionally defined with non-deterministic thread ordering

• Definitions:
– At any time, each thread t is in one of the following sets:

• READY: set of threads ready to execute (aka. RUNNABLE)
• WAIT: set of threads suspended by wait(event)
• WAITTIME: set of threads suspended by wait(time)

– Notified events are stored in a set N
• notify e1 adds event e1 to N

• wait e1 will wakeup when e1 is in N

• Consumption of event e means event e is taken out of N

• Expiration of notified events means N is set to Ø

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 14

SystemC Simulation Semantics

• Discrete Event Simulation (DES) Algorithm

Select thread tREADY, execute t

Add notified events to Nnotify

Move tREADY to WAIT

Move tREADY to WAITTIME

wait(e)

wait(t)

READY=Ø

Set N=Ø

READY=Ø

Update simulation time, move earliest tWAITTIME to READY

READY=Ø

Stop

Start

NO

YES

NO

YES

NO

YES

YES

YES

YES

Move all tWAIT waiting for events eN to READY

NO

E
va

lu
a

tio
n

 p
h

a
se

D
e

lta
 C

ycle

T
im

e
 C

ycle

ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2018 R. Doemer 8

SystemC Simulation Semantics

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 15

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Discrete Event Simulation (DES)

– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta cycle

• Time cycle

 Partial temporal order with barriers

• Reference Simulator
– IEEE SystemC specifies

cooperative multi-threading

 A single thread is active at any time
(even if multiple cores are available)

– Example: Execution of four threads

th0

SystemC Simulation Semantics

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 16

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Accellera SystemC

Proof-of-Concept Library

 uses an extra root thread
for the following tasks:
– Elaboration phase

– Scheduling

• Event notifications

• Channel updates

• Delta cycle updates

• Simulation time updates

– SC_METHOD calls

• (not shown)

ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2018 R. Doemer 9

SystemC Simulation Semantics

• Discrete Event Simulation (DES) Algorithm
– The SystemC Scheduler (by Doulos)

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 17

ECPS 203 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a digital camera

– Application source and documentation:
• http://marathon.csee.usf.edu/edge/edge_detection.html

• http://en.wikipedia.org/wiki/Canny_edge_detector

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 18

golfcart.pgm golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2018 R. Doemer 10

Project Assignment 1

• Task: Introduction to Application Example
– Canny Edge Detector

– Algorithm for edge detection in digital images

• Steps
1. Setup your Linux programming environment

2. Download, adjust, and compile the application C code
with the GNU C compiler (gcc)

3. Study the application, determine function-call tree

• Deliverables
– Source code and text file: canny.c, canny.txt

• Due
– Wednesday: October 10, 2018, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 19

Project Assignment 2

• Task: Clean C++ model with static memory allocation
– Prepare the C++ source code for modeling in SystemC

– Configure parameters for specific application

– Apply static memory allocation

• Steps
1. Fix the off-by-one bug in the non_max_supp function

2. Clean-up the code for compilation without warnings

3. Fix configuration parameters to compile-time constants

4. Remove or replace dynamic memory allocation

• Deliverables
– Source code and text file: canny.cpp, canny.txt

• Due
– Wednesday: October 17, 2018, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 20

ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2018 R. Doemer 11

ECPS 203 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a video camera of a drone

 Process video shot by a drone flying over Engineering Plaza
 Fly a drone over UCI Engineering Plaza, take video of buildings

 Record a color video stream in high resolution

 Extract a set of video frames suitable for use in our test bench

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 21

Engineering001.bmp Engineering001_edges.pgm

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Google Map of UCI Engineering Quad

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 22

ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2018 R. Doemer 12

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Drone flights in US

require approval
by the Federal
Aviation Administration
(FAA)

– On UCI campus,
Environmental Health
& Safety (EHS)
department is in charge
of Unmanned Aircraft
Safety

 Flight request approved
• Thursday,

October 19, 2017

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 23

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Drone Equipment

• DJI Phantom 3 Standard Quadcopter

• Remote Control with Mobile Device

– Drone carrries a Camera attached to a Gimble
• Video stream stored on a SD memory card, e.g. DJI_0001.MOV

• Video is 30 frames per second

• Frames are 2704 by 1520 pixels

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 24

[Image source: dji.com]

ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2018 R. Doemer 13

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Screen Shot of Drone Control App on Mobile Device

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 25

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Drone flight demonstration (Fall 2017)

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 26

ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2018 R. Doemer 14

ECPS 203 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a video camera of a drone

– Video taken by a drone flying over UCI Engineering Plaza
• Available on the server: ~ecps203/public/DroneFootage/

• High resolution, 2704 by 1520 pixes

• Representative sample, using 30 extracted frames for test bench model

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 27

Engineering012.png Engineering012_edges.pgm

Project Assignment 4

• Task: From Single Image to Video Stream Processing
– Prepare a sequence of image frames from the video

– Convert the Canny application to process the video frames

• Steps
1. Extract 30 of video frames suitable for use in a test bench

2. Convert the color frames to grey-scale images in PGM format

3. Recode your Canny C++ model to process the video frames
 To run Canny application successfully, increase stack size

 Adjust Canny parameters for the “best looking” output images

• Deliverables
– Source code and text file: Canny.cpp, Canny.txt

• Due
– Wednesday, October 31, 2018, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2018 R. Doemer 28

