EECS 10: Computational Methods in Electrical and Computer Engineering Lecture 6

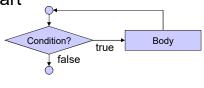
Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Lecture 6: Overview

- Repetition Statements
 - Example Average2.c
- Review
 - Lecture 1: Course administration, setup, Linux
 - Lecture 2: Introduction to C programming
 - Lecture 3: Program structure, basic types and operators
 - Lecture 4: Arithmetic expressions
 - Lecture 5: Conditional operators, statements
 - Lecture 6: Repetition statements
- Review Quiz


EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

2

Repetition Statements

- · Repetition (aka. iteration, loop)
 - repeated execution of a block of statements
 - counter-controlled
 - counter determines number of repetitions (often predefined at compile time)
 - sentinel-controlled
 - sentinel condition determines number of repetitions (usually determined at run time)
- Control flow chart

EECS10: Computational Methods in ECE, Lecture 5

(c) 2018 R. Doemer

3

- Explicit control flow in loops
 - break statement
 - · exits the innermost loop
 - continue statement
 - · jump back to the beginning of the innermost loop

Repetition Statements

Example:

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

4

Example Program Average of values: Average2.c (part 1/3) /* Average2.c: compute the average of a set of numbers /* author: Rainer Doemer /* modifications: /* 10/10/04 RD sentinel controlled loop /* 10/10/04 RD initial version #include <stdio.h> /* main function */ int main (void) /* variable definitions */ int counter; double value; double total; double average; (c) 2018 R. Doemer EECS10: Computational Methods in ECE, Lecture 6 5

Example Program Average of values: Average2.c (part 2/3) /* input and computation section */ counter = 0; total = 0.0;while (1) { printf("Please enter a value (or -1 to quit): "); scanf("%lf", &value); if (value == -1.0) { break; } /* fi */ total += value; counter++; } /* elihw */ EECS10: Computational Methods in ECE, Lecture 6 (c) 2018 R. Doemer 6

Example Program

• Average of values: Average2.c (part 3/3)

```
/* computation and output section */
printf("%d values entered.\n", counter);
if (counter >= 1)
    { average = total / (double) counter;
        printf("The average is %f.\n", average);
    } /* fi */

/* exit */
return 0;
} /* end of main */

/* EOF */
```

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

7

Example Program

• Example session: Average2.c

```
% vi Average2.c
% gcc Average2.c -o Average2 -Wall -ansi
% Average2
Please enter a value (or -1 to quit): 2
Please enter a value (or -1 to quit): 3
Please enter a value (or -1 to quit): 4
Please enter a value (or -1 to quit): 5
Please enter a value (or -1 to quit): -1
4 values entered.
The average is 3.500000.
% Average2
Please enter a value (or -1 to quit): -1
0 values entered.
%
```

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

8

- Today's computers run at which clock speed?
 - a) 85 MPH
 - b) 1 kHz
 - c) 1 ms
 - d) 1 GHz
 - e) 1 MHz

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

9

Quiz: Question 16

- Today's computers run at which clock speed?
 - a) 85 MPH
 - b) 1 kHz
 - c) 1 ms
- d) 1 GHz
- e) 1 MHz

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

10

- Which of the following constructs are valid type names in C? (Check all that apply!)
 - a) short char
 - b) long double
 - c) signed long int
 - d) unsigned float
 - e) signed integer

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

11

Quiz: Question 17

- Which of the following constructs are valid type names in C? (Check all that apply!)
 - a) short char
- b) long double
- c) signed long int
- d) unsigned float
- e) signed integer

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

12

 Assume i is a variable of type int and d is a variable of type double. Which statement is true for the following assignment? (Check all that apply!)

i = (int)d;

- a) The comparison checks whether d is an integer.
- b) The precision of i is doubled.
- c) The parentheses should go around d.
- d) The value in **d** is converted to an integer value and then assigned to **i**.
- e) Any fractional part in d is truncated off.

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

13

Quiz: Question 18

 Assume i is a variable of type int and d is a variable of type double. Which statement is true for the following assignment? (Check all that apply!)

i = (int)d;

- a) The comparison checks whether **d** is an integer.
- b) The precision of i is doubled.
- c) The parentheses should go around d.
- d) The value in d is converted to an integer value and then assigned to i.
- e) Any fractional part in d is truncated off.

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

14

- Which of the following statements correctly computes the polynomial $p = 2x^2 3x + 4$? (Check all that apply!)
 - a) $p = 2x^2 3x + 4$;
 - b) p = 2xx 3x + 4;
 - c) p = x*x*2 3*x + 4.0;
 - d) p = 2*(x*x + 3)*x + 4;
 - e) p = (2*x 3)*x + 4;

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

15

Quiz: Question 19

- Which of the following statements correctly computes the polynomial $p = 2x^2 3x + 4$? (Check all that apply!)
 - a) $p = 2x^2 3x + 4$;
 - b) p = 2xx 3x + 4;
- (c) c) p = x*x*2 3*x + 4.0;
 - d) p = 2*(x*x + 3)*x + 4;
- \mathbf{e} e) p = (2*x 3)*x + 4;

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

16

(c) 2018 R. Doemer

8

- Which of the following names are valid keywords in C? (Check all that apply!)
 - a) do
 - b) when
 - c) void
 - d) main
 - e) Int

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

17

Quiz: Question 20

- Which of the following names are valid keywords in C? (Check all that apply!)
- 📥 a) do
 - b) when
- C) void
 - d) main
 - e) Int

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

18

- Which of the following names are valid identifiers in C? (Check all that apply!)
 - a) xyz123
 - b) IBM
 - c) dollar amount
 - d) My_Very_Long_Variable_Name
 - e) 2fast4you

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

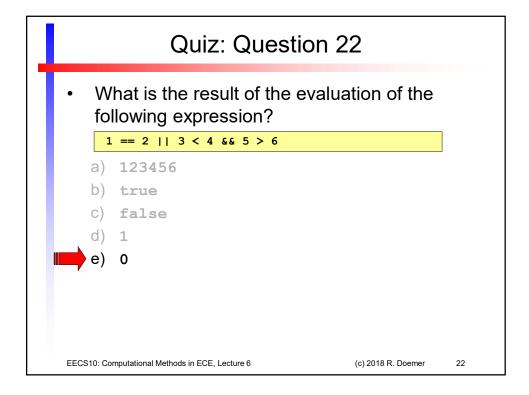
19

Quiz: Question 21

- Which of the following names are valid identifiers in C? (Check all that apply!)
- a) xyz123
- **b)** IBM
 - c) dollar amount
- d) My_Very_Long_Variable_Name
 - e) 2fast4you

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer


20

Quiz: Question 22 • What is the result of the evaluation of the following expression? 1 == 2 || 3 < 4 && 5 > 6 a) 123456 b) true c) false d) 1 e) 0

(c) 2018 R. Doemer

21

EECS10: Computational Methods in ECE, Lecture 6

What is the result of the evaluation of the following expression?

17 < 42 ? 17 : 42

- a) 1742
- b) 17
- c) 42
- d) true
- e) false

EECS10: Computational Methods in ECE, Lecture 6

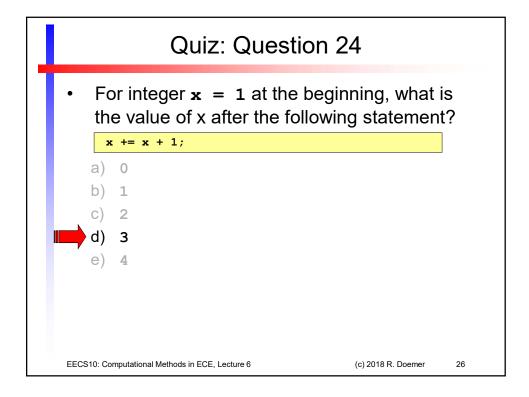
(c) 2018 R. Doemer

23

Quiz: Question 23

What is the result of the evaluation of the following expression?

17 < 42 ? 17 : 42


- a) 1742
- b) 17
- c) 42
- d) true
- e) false

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

24

Quiz: Question 24 For integer x = 1 at the beginning, what is the value of x after the following statement? x += x + 1; a) 0 b) 1 c) 2 d) 3 e) 4 EECS10: Computational Methods in ECE, Lecture 6 (c) 2018 R. Doemer 25

Assuming that x is a variable of type int, which values of x satisfy the following condition?

x % 2 == 1

- a) no value
- b) any value
- c) any value less than 2
- d) any odd value
- e) any even value

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

27

Quiz: Question 25

 Assuming that x is a variable of type int, which values of x satisfy the following condition?

x % 2 == 1

- a) no value
- b) any value
- c) any value less than 2
- 📥 d) any odd value
 - e) any even value

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

28

 Assume that x is an integer in the range of 1 through 10 inclusively. Which of the following expressions can be used as a test for x being an even number?

(Check all that apply!)

- a) x % 2 == 0
- b) x / 2 > 1
- c) x % 2 == 1
- d) x / 2 * 2 == x
- e) x==2 || x==4 || x==6 || x==8 || x==10

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

29

Quiz: Question 26

 Assume that x is an integer in the range of 1 through 10 inclusively. Which of the following expressions can be used as a test for x being an even number?

(Check all that apply!)

- 📂 a) 🗴 % 2 == 0
 - b) x / 2 > 1
 - c) x % 2 == 1
- 📥 d) 🗴 / 2 * 2 == 🗴
- e) x==2 || x==4 || x==6 || x==8 || x==10

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

30

 Given the following program fragment, what is printed when it gets executed?

- a) nothing
- b) 0
- c) 10
- d) 20
- e) 30

```
int i = 1;
int s = 0;
while (1)
    { i++;
    if (i >= 10)
        { break; }
    if (i % 2 == 1)
        { continue; }
    s += i;
}
printf("%d", s);
```

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

31

Quiz: Question 27

 Given the following program fragment, what is printed when it gets executed?

- a) nothing
- b) 0
- c) 10
- d) 20
- e) 30

```
int i = 1;
int s = 0;
while (1)
    { i++;
        if (i >= 10)
            { break; }
        if (i % 2 == 1)
            { continue; }
        s += i;
    }
printf("%d", s);
```

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

32

- Which of the following variable declarations is valid in ANSI-C? (Check all that apply!)
 - a) double xyz;
 - b) double xy, z;
 - c) double x = .1;
 - d) double x = 1.1, y = 2.2, z = 3.3;
 - e) double x,y,z = 1.0,2.0,3.0;

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

33

Quiz: Question 28

- Which of the following variable declarations is valid in ANSI-C? (Check all that apply!)
- a) double xyz;
 - b) double xy, z;
- C) double x = .1;
 - d) double x = 1.1, y = 2.2, z = 3.3;
 - e) double x,y,z = 1.0,2.0,3.0;

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

34

- Which of the following data types has the largest range of representable numbers?
 - a) char
 - b) short int
 - C) long long int
 - d) unsigned int
 - e) signed long int

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

35

Quiz: Question 29

- Which of the following data types has the largest range of representable numbers?
 - a) char
 - b) short int
 - c) long long int
 - d) unsigned int
 - e) signed long int

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

36

- Which of the following data types can store the greatest value?
 - a) long int
 - b) long long int
 - c) unsigned long long int
 - d) float
 - e) double

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

37

Quiz: Question 30

- Which of the following data types can store the greatest value?
 - a) long int
 - b) long long int
 - c) unsigned long long int
 - d) float
 - e) double

EECS10: Computational Methods in ECE, Lecture 6

(c) 2018 R. Doemer

38