
Due Wednesday November 7, 2018 at 12:00pm

EECS 10: Assignment 5

Prepared by: Hidir Askar, Prof. Rainer Doemer

October 25, 2018

1 Roulette [15 points]

Write a program to simulate the casino game called Roulette. We will use a simplified version of Roulette. We will
only use numbers from 0 to 36 (00 is excluded). Further, the user is only allowed to bet on odd or even numbers.
First, your program will prompt the users to enter the amount of money they had (balance) and the betting type such
as 1-Odd number, 2-Even number, 0-To quit the game. Then your program will prompt for the betting amount.

Following this, your program will generate a random number between 0 and 36 (including 0 and 36). Depending on
the betting type chosen by the user, the program will check the generated number if it is an even or an odd number. If
user wins, the user gets the betting amount which will be added to the balance. If user loses, the user will lose the
betting amount which will be deducted from the balance.

If user has some balance, the program will repeat prompting the user for the next betting. Your program will quit if the
user loses all the money (i.e. balance is 0), or when the user enters 0 when prompted for the betting type. When you run
the program, it should look like as follows:

Entering the casino, how much money do you have? $120
We are playing Roulette, odd or even bets only.
Place your bet!
Enter 1 for odd, 2 for even, 0 to quit: 1
How much money you want to bet? $40
You bet $40.00 on odd numbers.
The winning number is 29!
You Win!
Your balance is $160.00!!
Place your bet!
Enter 1 for odd, 2 for even, 0 to quit: 2
How much money you want to bet? $120
You bet $120.00 on even numbers.
The winning number is 29!
You Lose!
Your balance is $40.00!!
Place your bet!
Enter 1 for odd, 2 for even, 0 to quit: 0
You exit the casino with $40.00

What to turn in:
You should submit your program code as file roulette.c, a text file roulette.txt briefly explaining
how you designed your program, and a typescript roulette.script which shows that you compile your
program and run it for 5 bets.

HINT

For generating the random number, you must use a random number generator which is provided by the C standard
function rand(). This function generates a random number of type int in the range of 0 to 32767. This function
is provided in the header file stdlib.h.

In practice, no computer functions can produce truly random data -- they only produce pseudo-random numbers.
These are computed from a formula and the number sequences they produce are repeatable. A seed value is usually
used by the random number generator to generate a number. Therefore, if you use the same seed value all the time,
the same sequence of “random” numbers will be generated (i.e. your program will always produce the same
“random” number in every program run). To avoid this, we can use the current time of the day to set the random
seed, as this will always be changing with every program run. With this trick, your program will produce different
guesses every time you run it.

To set the seed value, you must use the function srand(), which is also provided by header file stdlib.h. For
the current time of the day, you can use the function time(), which is defined in header file time.h
(stdlib.h and time.h are header files just like the stdio.h file that we have been using so far).

In summary, use the following code fragments to generate the random number for the game:

1. Include the stdlib.h and time.h header files at the beginning of your program:

#include <stdlib.h>
#include <time.h>

2. Include the following lines at the beginning of your main function:

/* initialize the random number generator with the current time */
srand(time(0));

3. In your program, use the following to generate the random number:
/* generate the random number in the range 0 to 36 */
randomNumber = rand() % 37;

Here, randomNumber is the integer variable which is assigned the generated random number.

2 Monte Carlo Calculation of  [25 points]

Monte Carlo (MC) methods are stochastic techniques, meaning they are based on the use of random numbers and
probability statistics to investigate problems. In this part of the homework, you are asked to write a program to
implement a simple geometric MC experiment which calculates the value of based on a “hit and miss”
integration.

The figure below shows two equally sized semi-circles circumscribed by a square. The radius of the circle r equals
to half of the side of the square. Furthermore, the center of each semi-circle is located at a distance r above the x-
axis. (The center of the semi-circle on the left is located at (0, r) and the center of the semi-circle on the right is
located at (2r, r).)

1

≤ ≤ ≤ ≤

Figure 1: Two Semi-Circles Circumscribed by a Square

Imagine we can throw points randomly at the above figure. If we can throw infinite random points, it should be
obvious that of the total number of points that hit the semi-circles divided by the number of points that hit within the
square is proportional to the area of that part. In other words:

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 ℎ𝑖𝑡𝑡𝑖𝑛𝑔 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑒𝑚𝑖𝑐𝑖𝑟𝑐𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 ℎ𝑖𝑡𝑡𝑖𝑛𝑔 𝑠𝑞𝑢𝑎𝑟𝑒 𝑎𝑟𝑒𝑎
=

𝑎𝑟𝑒𝑎 𝑜𝑓 2 𝑠𝑒𝑚𝑖𝑐𝑖𝑟𝑐𝑙𝑒𝑠

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒
=

𝑎𝑟𝑒𝑎 𝑜𝑓 1 c𝑖𝑟𝑐𝑙𝑒

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒
=

𝜋𝑟ଶ

(2𝑟)ଶ
=

𝜋

4

Therefore, we get the formula to calculate  using Monte Carlo method:

𝜋 = 4
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 ℎ𝑖𝑡𝑡𝑖𝑛𝑔 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑒𝑚𝑖𝑐𝑖𝑟𝑐𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 ℎ𝑖𝑡𝑡𝑖𝑛𝑔 𝑠𝑞𝑢𝑎𝑟𝑒 𝑎𝑟𝑒𝑎

In the real world, we can only throw a finite number of random points, therefore, the  value calculated using the
above formula, is an approximation of the exact value of .

We can have our computer generate random numbers to simulate the throwing of points. For each point, we can have
the computer generate two random floating point numbers to be the x and y coordinates of the point, where
0 x 2r and 0 y 2r so that (x, y) must fall within the square area. However, this randomly generated point could
fall within one of the two semi-circle areas or fall out of both semi-circle areas.

To decide if the randomly generated point (x, y) is within ONE of the two semi-circle areas, we can compare the
distance of the point to the center of both semi-circles with the radius r. For example, the point A in the above figure
is in the left semi-circle area since its distance to the center of the left semi-circle is less than r. Likewise, point C
(although is not in the left semi-circle), is within the right semi-circles because its distance to the center of the right
semi-circle is less than r. However, the point B in the above figure is not in either semi-circle since its distance to the
center of both semi-circles is greater than r.

Note: If the distance of point to the center of either semi-circle equals to radius r, then that point is considered
within that semi-circle area.

2

Assume the radius of both semi-circles is r and the coordinates of the randomly generated point P is (x, y), then
the distance of P to the center of the left semi-circle for instance is:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃, 𝐶𝑒𝑛𝑡𝑒𝑟𝑂𝑓𝐿𝑒𝑓𝑡𝑆𝑒𝑚𝑖𝐶𝑖𝑟𝑐𝑙𝑒) = ඥ(𝑥 − 0)ଶ + (𝑦 − 𝑟)ଶ

To avoid the square root calculation, you can compare Distance(P,CenterOfLeftSemiCircle)×Distance(P,CenterOfLeftSemiCirle)
with the radius squared r × r to decide if the randomly generated point is within the semi-circle area.

At the beginning, your program should ask for the inputs of radius r and the number of random points N, then the
computer needs to generate. The output should like this:

Enter the radius of circle: 5
Enter the number of points: 10

During the generation, whenever a random point is generated, your program should print out the coordinates of the
point and whether the point is IN or OUT of the circle area like this:

Point No.1(x=3.802119,y=3.865261): IN
Point No.2(x=2.386443,y=8.603144): IN
Point No.3(x=1.436350,y=9.787927): IN
Point No.4(x=5.189720,y=5.761595): IN
Point No.5(x=5.693470,y=2.979575): IN
Point No.6(x=6.711535,y=5.031853): IN
Point No.7(x=4.589265,y=4.176325): IN
Point No.8(x=8.762683,y=0.738576): IN
Point No.9(x=8.992859,y=1.922931): IN
Point No.10(x=5.395791,y=2.822133): OUT

At the end, your program should output the number of points within and out of the circle, together with the
approximate value of  like this:

/******In Summary******/
Points within circle areas: 9
Points out of circle areas: 1
Pi= 3.600000

To show that your program works correctly, run it once with the radius = 5 and the number of points = 35. Submit
the output as your script file (mc.script). Please compile your C code using -ansi -Wall options as below to specify
ANSI code with all warnings:

gcc -ansi -Wall mc.c -o mc

The files that you should submit for this part of the assignment are:

• mc.c: the source code file.

• mc.txt: the brief text file to explain what the program does and why you chose your method of implementation.

mc.script: the typescript file to show that your program works with radius = 5 and number of points = 35.

•

3

HINT
In assignment 4, you have learned how to generate random integer numbers within the range of [0, n) (n is
exclusive). However, in this homework, you need to generate floating point numbers with the range of [0, n] (n is
inclusive). Therefore, there are some modification of the code described in homework4.

You need to replace the following lines in assignment 4:

int randomNumber;
randomNumber = rand() % n; with

double randomNumber;
randomNumber = ((double)rand())/((double)RAND_MAX)*s; /* s is the side of the square */

Furthermore, in assignment 5, you are required to use the same seed to generate random numbers so that the same
series of random numbers are generated. Therefore, take out the following line:

#include <time.h>

and replace the following line in homework4:

srand(time(NULL)); with
srand(0);

3 Bonus Problem [5 points]

Figure 2: A Quadrant of a Circle Circumscribed by a Square

Could we use the Monte Carlo method to calculate given Figure 2 above? It’s a quadrant of a circle circumscribed
by a square. The radius of circle equals to the side of square and their centers are overlapped. If yes, explain your
method and formula in the same text file of part 2 (mc.txt) concisely within 10 sentences.

4 Submission

Submission for these files is similar to previous weeks’ assignments. The only difference is that you need to create a
directory called hw5/. Put all the files for assignment 5 in that directory and run the ~eecs10/bin/turnin.sh
command to submit your homework.

