Note: C How to Program, Chapter 16 is a copy
of C++ How to Program Chapter 3. We have
not renumbered the PowerPoint Slides.

Chapter 3
Introduction to Classes,
Objects and Strings

C++ How to Program, 8/e

©1992-2012 by Pearson Education, Inc. All Rights Reserved.

<]
3.2 Defining a Class with a Member

Function

» We begin with an example (Fig. 3.1) that consists of
class GradeBook (lines 8-16), which, when it is fully
developed in Chapter 7, will represent a grade book
that an instructor can use to maintain student test
scores, and a main function (lines 19-23) that creates
a GradeBook object.

» Function main uses this object and its member
function to display a message on the screen welcoming
the instructor to the grade-book program.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

2/26/2018

1 // Fig. 3.1: fig03_01l.cpp
2 // Define class GradeBook with a member function displayMessage,
3 // create a GradeBook object, and call its displayMessage function.
4 #include <iostream>
5 using namespace std;
6
7 // GradeBook class definition
8 class GradeBook
9 i
10 public:
B // function that displays a welcome message to the GradeBook user
12 void displayMessage()
13
14 cout << << endl;
15 } // end function displayMessage
16 }; // end class GradeBook
17
Fig. 3.1 | Define class GradeBook with a member function

displayMessage, create a GradeBook object and call its
displayMessage function. (Part | of 2.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

R

18 // function main begins program execution
19 int mainQ)

20
21 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
22 myGradeBook.displayMessage(); // call object's displayMessage function

23 } // end main

Welcome to the Grade Book!

Fig. 3.1 | Define class GradeBook with a member function
displayMessage, create a GradeBook object and call its
displayMessage function. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

2/26/2018

3.3 Defining a Member Function with a
Parameter (cont.)

» Fig. 3.3 redefines class GradeBook (lines 9-18) with a
displayMessage member function (lines 13—17) that
displays the course name as part of the welcome message.
> The new version of displayMessage requires a parameter

» A variable of type string represents a string of
characters.

» A string is actually an object of the C++ Standard Library
class string.
> Defined in header <string> and part of namespace std.

types such as int.
> Additional string capabilities in Section 3.9.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

R

(courseName in line 13) that represents the course name to output.

> For now, you can think of string variables like variables of other

// Fig. 3.3: fig03_03.cpp

// Define class GradeBook with a member function that takes a parameter,
// create a GradeBook object and call its displayMessage function.
#include <iostream>

#include <string> // program uses C++ standard string class

using namespace std;

// GradeBook class definition

class GradeBook

10 {

Il public:

12 // function that displays a welcome message to the GradeBook user
13 void displayMessage(string courseName)

14 {

15 cout << << courseName <<
16 << endl;

7 } // end function displayMessage

18 }; // end class GradeBook

VO~ UNhWN =

Fig. 3.3 | Define class GradeBook with a member function that takes
a parameter, create a GradeBook object and call its displayMessage
function. (Part | of 3.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

2/26/2018

20 // function main begins program execution
21 int main(Q)

22 {

23 string nameOfCourse; // string of characters to store the course name
24 GradeBook myGradeBook; // create a GradeBoock object named myGradeBook
25

26 // prompt for and input course name

27 cout << << endl;

28 getline(cin, nameOfCourse); // read a course name with blanks

29 cout << endl; // output a blank line

30

31 // call myGradeBook's displayMessage function

32 // and pass nameOfCourse as an argument

33 myGradeBook.displayMessage(nameOfCourse);

34 } // end main

Fig. 3.3 | Define class GradeBook with a member function that takes
a parameter, create a GradeBook object and call its displayMessage
function. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

R

Please enter the course name:
€5101 Introduction to C++ Programming

Welcome to the grade book for
C5101 Introduction to C++ Programming!

Fig. 3.3 | Define class GradeBook with a member function that takes
a parameter, create a GradeBook object and call its displayMessage
function. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

2/26/2018

<]
3.4 Data Members, set Functions and get

Functions (cont.)

» An object has attributes that are carried with it as it’s used
in a program.
o Such attributes exist throughout the life of the object.
> A class normally consists of one or more member functions that
manipulate the attributes that belong to a particular object of the
class.
» Attributes are represented as variables in a class definition.

o Such variables are called data members and are declared inside a
class definition but outside the bodies of the class’s member-function
definitions.

» Each object of a class maintains its own copy of its
attributes in memory.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

3.4 Data Members, set Functions and get
Functions (cont.)

» A typical instructor teaches multiple courses, each with
its own course name.

» A variable that is declared in the class definition but
outside the bodies of the class’s member-function
definitions is a data member.

» Every instance (i.e., object) of a class contains one
copy of each of the class’s data members.

» A benefit of making a variable a data member is that all
the member functions of the class can manipulate any
data members that appear in the class definition.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

2/26/2018

VRN E WN -

// Fig. 3.5: fig03_05.cpp

// Define class GradeBook that contains a courseName data member
// and member functions to set and get its value;

// Create and manipulate a GradeBook object with these functions.
#include <iostream>

#include <string> // program uses (++ standard string class
using namespace std;

// GradeBook class definition

class GradeBook

{

public:
// function that sets the course name
void setCourseName(string name)

courseName = name; // store the course name in the object
} // end function setCourseName

// function that gets the course name
string getCourseName()

return courseName; // return the object's courseName
} // end function getCourseName

Fig. 3.5 | Defining and testing class GradeBook with a data member
nd set and get functions. (Part | of 3.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

R

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

// function that displays a welcome message
void displayMessage()

{
// this statement calls getCourseName to get the
// name of the course this GradeBook represents
cout << S t << getCourseName() <<
<< endl;
} // end function displayMessage
private:

string courseName; // course name for this GradeBook
}; // end class GradeBook

// function main begins program execution

int main()

{
string nameQfCourse; // string of characters to store the course name
GradeBook myGradeBook; // create a GradeBock object named myGradeBook

Fig. 3.5 | Defining and testing class GradeBook with a data member
and set and get functions. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

2/26/2018

43 // display initial value of courseName

44 cout << << myGradeBook.getCourseName ()
45 << endl;

46

47 // prompt for, input and set course name

48 cout << << endl;

49 getline(cin, nameOfCourse); // read a course name with blanks
50 myGradeBook.setCourseName(nameOfCourse); // set the course name
51

52 cout << endl; // outputs a blank line

53 myGradeBook.displayMessage(); // display message with new course name

54 } // end main

Initial course name is:

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
C5101 Introduction to C++ Programming!

Fig. 3.5 | Defining and testing class GradeBook with a data member
and set and get functions. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

R

3.5 Initializing Objects with Constructors

» Each class can provide a constructor that can be used to
initialize an object of the class when the object is
created.

» A constructor is a special member function that must be
defined with the same name as the class, so that the
compiler can distinguish it from the class’s other
member functions.

» An important difference between constructors and other
functions is that constructors cannot return values, so
they cannot specify a return type (not even vo1id).

» Normally, constructors are declared pub11ic.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

2/26/2018

» C++ requires a constructor call for each object that is
created, which helps ensure that each object is

initialized before it’s used in a program.

3.5 Initializing Objects with Constructors
(cont.)

» The constructor call occurs implicitly when the object

is created.

» If a class does not explicitly include a constructor, the
compiler provides a default constructor—that is, a

constructor with no parameters.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

VO~ UNhWN =

// Fig. 3.7: fig03_07.cpp

// Instantiating multiple objects of the GradeBook class and using
// the GradeBook constructor to specify the course name

// when each GradeBook object is created.

#include <iostream>

#include <string> // program uses C++ standard string class

using namespace std;

// GradeBook class definition
class GradeBook
{
publiic:
// constructor initializes courseName with string supplied as argument
GradeBook(string name)
{
setCourseName(name); // call set function to initialize courseName
} // end GradeBook constructor

Fig. 3.7 | Instantiating multiple objects of the GradeBook class and
using the GradeBook constructor to specify the course name when
each GradeBook object is created. (Part | of 3.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

2/26/2018

19 // function to set the course name

20 void setCourseName(string name)

21 {

22 courseName = name; // store the course name in the object
23 } // end function setCourseName

24

25 // function to get the course name

26 string getCourseName()

27 {

28 return courseName; // return object's courseName

29 } // end function getCourseName

30

31 // display a welcome message to the GradeBook user

32 void displayMessage()

33 {

34 // call getCourseName to get the courseName

35 cout << << getCourseName()
36 << << endl;

37 } // end function displayMessage

Fig. 3.7 | Instantiating multiple objects of the GradeBook class and
using the GradeBook constructor to specify the course name when
each GradeBook object is created. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

R

38 private:

39 string courseName; // course name for this GradeBook
40 }; // end class GradeBook
41

42 // function main begins program execution
43 int mainQ

44 {

45 // create two GradeBook objects

46 GradeBook gradeBookl1(7

47 GradeBook gradeBook2(b H

48

49 // display initial value of courseName for each GradeBook

50 cout << << gradeBookl.getCourseName ()
51 << << gradeBook2.getCourseName ()
52 << endl;

53 } // end main

gradeBookl created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: C5102 Data Structures in C++

Fig. 3.7 | Instantiating multiple objects of the GradeBook class and
using the GradeBook constructor to specify the course name when
each GradeBook object is created. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

2/26/2018

3.6 Placing a Class in a Separate File for
Reusability (cont.)

» Each of the previous examples in the chapter consists
of a single . cpp file, also known as a source-code file,
that contains a GradeBook class definition and a
main function.

» When building an object-oriented C++ program, it’s
customary to define reusable source code (such as a

class) in a file that by convention has a . h filename
extension—known as a header.

» Programs use #1nclude preprocessor directives to
include headers and take advantage of reusable
software components.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

VO~ UNhWN =

10
B
12
13
14
15
16
17
8
19
20
21
22

// Fig. 3.9: GradeBook.h

// GradeBook class definition in a separate file from main.
#include <iostream>

#include <string> // class GradeBook uses C++ standard string class
using namespace std;

// GradeBook class definition

class GradeBook

{

public:
// constructor initializes courseName with string supplied as argument
GradeBook(string name)

setCourseName(name); // call set function to initialize courseName
} // end GradeBook constructor

// function to set the course name
void setCourseName(string name)
{
courseName = name; // store the course name in the object
} // end function setCourseName

Fig. 3.9 | GradeBook class definition in a separate file from main.
(Pa

t1of2)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

2/26/2018

10

// function to get the course name
string getCourseName()

return courseName; // return object's courseName
} // end function getCourseName

// display a welcome message to the GradeBook user
void displayMessage()
{

// call getCourseName to get the courseName
cout << << getCourseName()
<< << endl;
} // end function displayMessage
private:
string courseName; // course name for this GradeBook
}; // end class GradeBook

Fig. 3.9 | GradeBook class definition in a separate file from main.
(Part 2 of 2.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

R

VO~ UNhWN =

// Fig. 3.10: fig03_10.cpp

// Including class GradeBook from file GradeBook.h for use in main.
#include <iostream>

#include // include definition of class GradeBook
using namespace std;

// function main begins program execution

int main(Q)
{
// create two GradeBook objects
GradeBook gradeBook1(bH
GradeBook gradeBook2(H
// display initial value of courseName for each GradeBook
cout << 3 << gradeBookl.getCourseName()
<< << gradeBook2.getCourseName()
<< endl;

} // end main

gradeBookl created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: C5102 Data Structures in C++

Fig. 3.10 | Including class GradeBook from file GradeBook . h for
use in main.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

2/26/2018

11

3.7 Separating Interface from
Implementation

» Interfaces define and standardize the ways in which
things such as people and systems interact with one
another.

» The interface of a class describes what services a
class’s clients can use and how to request those
services, but not how the class carries out the services.

» A class’s pub1ic interface consists of the class’s
pub1ic member functions (also known as the class’s
public services).

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

R

// Fig. 3.11: GradeBook.h

I

2 // GradeBook class definition. This file presents GradeBook's public
3 // interface without revealing the implementations of GradeBook's member
4 // functions, which are defined in GradeBook.cpp.

5 #include <string> // class GradeBook uses C++ standard string class

6 using namespace std;

7

8 // GradeBook class definition

9 class GradeBook

10 {

Il public:

12 GradeBook(string); // constructor that initializes courseName

13 void setCourseName(string); // function that sets the course name
14 string getCourseName(); // function that gets the course name

15 void displayMessage(); // function that displays a welcome message
16 private:

17 string courseName; // course name for this GradeBook

18 }; // end class GradeBook

Fig. 3.11 | GradeBook class definition containing function
prototypes that specify the interface of the class.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

2/26/2018

12

2/26/2018

<]
3.7 Separating Interface from

Implementation (cont.)

» Source-code file GradeBook . cpp (Fig. 3.12) defines
class GradeBook’s member functions, which were
declared in lines 12—15 of Fig. 3.11.

» Notice that each member-function name in the function
headers (lines 9, 15, 21 and 27) is preceded by the class
name and : @, which is known as the binary scope
resolution operator.

» This “ties” each member function to the (now separate)
GradeBook class definition (Fig. 3.11), which
declares the class’s member functions and data
members.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

// Fig. 3.12: GradeBook.cpp

I

2 // GradeBook member-function definitions. This file contains

3 // implementations of the member functions prototyped in GradeBook.h.
4 #include <iostream>

5 #include // include definition of class GradeBook

6 using namespace std;

7

8 // constructor initializes courseName with string supplied as argument
9 GradeBook: :GradeBook(string name)

10 {

[N} setCourseName(name); // call set function to initialize courseName
12 } // end GradeBook constructor

13

14 // function to set the course name
15 void GradeBook::setCourseName(string name)

16 {

17 courseName = name; // store the course name in the object
18 } // end function setCourseName

19

Fig.3.12 | GradeBook member-function definitions represent the
implementation of class Gradesook. (Part | of 2.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

13

20 // function to get the course name
21 string GradeBook: :getCourseName()

22 {

23 return courseName; // return object's courseName
24 } // end function getCourseName

25

26 // display a welcome message to the GradeBook user
27 void GradeBook: :displayMessage()

28 {

29 // call getCourseName to get the courseName

30 cout << << getCourseName ()
31 << << endl;

32 } // end function displayMessage

Fig. 3.12 | GradeBook member-function definitions represent the
implementation of class Gradegook. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

R

1 // Fig. 3.13: fig03_13.cpp

2 // GradeBook class demonstration after separating

3 // its interface from its implementation.

4 #include <iostream>

5 #include // include definition of class GradeBook

6 using namespace std;

7

8 // function main begins program execution

9 int mainQ

10 {

] // create two GradeBook objects

12 GradeBook gradeBookl1()

13 GradeBook gradeBook2()

14

15 // display initial value of courseName for each GradeBook

16 cout << << gradeBookl.getCourseName()
17 << << gradeBook2.getCourseName ()
18 << endl;

19 } // end main

Fig.3.13 | GradeBook class demonstration after separating its
interface from its implementation. (Part | of 2.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

2/26/2018

14

gradeBookl created for course: C5101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig.3.13 | GradeBook class demonstration after separating its
interface from its implementation. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

R

i

]
GradoBook. cpp [GradeBaok ' main function '
i) | & D etsoucecode)) 1
\\ ‘ i
' i
i . |]
| GradeBookcss % | CesSundailban | main function’s '
objectcode [ohvect coce 4 abiect coce
: GradeBook b
\ wcutable application i
\ H
X GradeBook Pd
k! Ap er "

Fig. 3.14 | Compilation and linking process that produces an
executable application.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

2/26/2018

15

<]
3.8 Validating Data with set Functions

» The program of Figs. 3.15-3.17 enhances class
GradeBook’s member function setCourseName to
perform validation (also known as validity checking).

» Since the interface of the clas remains unchanged,
clients of this class need not be changed when the
definition of member function setCourseName is
modified.

» This enables clients to take advantage of the improved
GradeBook class simply by linking the client code to
the updated GradeBook’s object code.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

VO~ UNhWN =

10
B
12
13

Fig.

// Fig. 3.16: GradeBook.cpp

// Implementations of the GradeBook member-function definitions.
// The setCourseName function performs validation.

#include <iostream>

#include // include definition of class GradeBook
using namespace std;

// constructor initializes courseName with string supplied as argument
GradeBook: :GradeBook(string name)
{
setCourseName(name); // validate and store courseName
} // end GradeBook constructor

3.16 | Member-function definitions for class GradeBook with a

set function that validates the length of data member courseName.
(Part | of 3.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

2/26/2018

16

// function that sets the course name;
// ensures that the course name has at most 25 characters
void GradeBook: :setCourseName(string name)

{

if (name.length() <=) // if name has 25 or fewer characters
courseName = name; // store the course name in the cbject

if (name.length() > 25) // if name has more than 25 characters
{
// set courseName to first 25 characters of parameter name
courseName = name.substr(0,); // start at 0, length of 25

cout << << name <<
<< << endl;
} // end if

} // end function setCourseName

Fig. 3.16 | Member-function definitions for class GradeBook with a
set function that validates the length of data member courseName.
(Part 2 of 3.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

R

VO~ UNhWN =

// Fig. 3.17: fig03_17.cpp

// Create and manipulate a GradeBook object; illustrate validation.
#include <iostream>

#include // include definition of class GradeBook
using namespace std;

// function main begins program execution
int main(Q)

{

// create two GradeBook objects;

// initial course name of gradeBookl is too long

GradeBook gradeBook1(gramming in C++
GradeBook gradeBook2(DI

// display each GradeBook's courseName
cout <<

<< gradeBookl.getCourseName()

<<

<< gradeBook2.getCourseName() << endl;

// modify myGradeBook's courseName (with a valid-length string)
gradeBookl.setCourseName ();

Fig.3.17 | Creating and manipulating a GradeBook object in which
he course name is limited to 25 characters in length. (Part | of 2.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

2/26/2018

17

2/26/2018

R

24 // display each GradeBook's courseName
25 cout <<

26 << gradeBookl.getCourseName()

27 <<

28 << gradeBook2.getCourseName() << endl;

29 } // end main

Name "CS101 Introduction to Programming in C++" exceeds maximum length (25).
Limiting courseName to first 25 characters.

gradeBookl's initial course name is: CS101 Introduction to Pro
gradeBook2's initial course name is: CS102 C++ Data Structures

gradeBookl's course name is: (CS101 C++ Programming
gradeBook2's course name is: CS102 C++ Data Structures

Fig.3.17 | Creating and manipulating a GradeBook object in which
the course name is limited to 25 characters in length. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

18

