
EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 1

EECS 22L: Software Engineering Project
in C Language

Lecture 3

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 2

Lecture 3: Overview

• Software Development Tools, Overview
– Linux commands and tools

– Scripting languages, shells

– IDEs, source code management tools

• Source Code Management
– Collaborative software development

– Version trees

– Concurrent Versions System (CVS)

Detailed development example

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 2

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 3

Software Development Tools, Overview

• Linux Commands and Tools
– Basic system commands [see EECS22 Lecture 1]
– echo print a message
– date print the current date and time
– ls list the contents of the current directory
– cat list the contents of files
– more list the contents of files page by page
– pwd print the path to the current working directory
– mkdir create a new directory
– cd change the current directory
– cp copy a file
– mv rename and/or move a file
– rm remove (delete) a file
– rmdir remove (delete) a directory
– man view manual pages for system commands and tools

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 4

Software Development Tools, Overview

• Linux Commands and Tools
– Text editors [see EECS22 Lecture 1]
– vi standard Unix editor

– vim vi-improved (supports syntax highlighting, and much more…)

Can compare two files (like diff) and visualize the differences
• vim –d fibonacci.c fibonacci2.c

– pico easy-to-use text editor

– emacs very powerful editor

– gedit nice GUI editor in separate X-window

– Manual page creation
– groff simple text formatter

• groff -man -Tascii man/manl/name.l >man/catl/name.l

– Online how-to page:
http://www.linuxhowtos.org/System/creatingman.htm

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 3

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 5

Software Development Tools, Overview

• Linux Commands and Tools
– Advanced file system commands
– gtar GNU tape archiver, manage a “tar-ball” package

• gtar cvzf package.tar.gz files… (create an archive)

• gtar tvzf package.tar.gz (view an archive’s contents)

• gtar xvzf package.tar.gz (extract an archive)

– ln create (symbolic or hard) links to files
• ln –s path_to_file link_name

– chmod set file access permissions
• ls –l filename

• chmod u+rwx,g+rx-w,o-rwx filename

• chmod 750 filename

– groups list group memberships of a user

– chgrp change group for a file
• chgrp team7 filename

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 6

Software Development Tools, Overview

• Scripting Languages
– Build scripts

• make, Makefile [see EECS22 Lecture 11]

– Cross-platform Make
• cmake

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 4

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 7

Software Development Tools, Overview

• General Purpose Shell and Scripting Languages
– Unix shell, and GNU bourne-again shell

• sh

• bash

– Berkeley Unix C shell, and extension
• csh

• tcsh

• Remote Shells
– Secure shell

• ssh user@hostname.domain

• scp user@hostname.domain:sourcefile targetfile

– Insecure (!) remote shells
• rsh

• telnet

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 8

Software Development Tools, Overview

• Integrated Development Environment
– eclipse

• Software Documentation Generator
– doxygen

• Source Code Management
– Concurrent Versions System [see details in following slides!]
– cvs checkout ...

– Subversion
– svn checkout ...

– Git (the current Linux kernel source code management tool)
– git clone ...

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 5

Source Code Management

• Source Code Management
– Also known as Version Control

– or Configuration Management

• Purpose and Goals
– Team-based, concurrent software development

– Access control

– Archive for software development and versions

– Efficient storage space usage with remote access

– Common data base with records of
• Source code, documentation, and other build files

• Versions and revisions

• Branches and merges

• History and log information

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 9

Source Code Management

• Collaborative Software Development
 Shared but dependent source code files!

– Two options:
• Single modifications with file locking

– Ensures that no two developers modify the same file at same time

– But has drawbacks:

» Locking may be forgotten

» Locking may lead to deadlocks (!)

» Locally modified files may lead to mismatches with locked
ones…

• Multiple modifications with merging
– Multiple developers work on the same files at the same time

» Multiple modifications are allowed, different versions exist!

– Files are merged when inserted into the common code base
(“merge and commit to the repository”)

 Merging can often be performed automatically!

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 10

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 6

Source Code Management

• Version Trees
– Software products consist of versions

• Release versions (externally visible)

• Development revisions (internal only)

– Concurrent feature development requires
multiple parallel branches

• Separate common vs. feature files
 Only a few of the files actually differ

– Version trees consist of
• Major release versions (e.g. 1.0, 2.0, 3.0)

• Minor development revisions (e.g. 1.1, 1.2, …)

• Root (e.g. revision 0.0) and main trunk

• Branches for features (1.0.1, 1.0.2, …)

– May be active (open) or dead (closed)

– May be merged into other branches

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 11

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 12

Source Code Management

• Version Control with
Concurrent Versions System (CVS)
– Overview

– Creating a CVS repository

– Starting a project

– Checking out a project

– Checking in updated files

– Adding new files

– Concurrent updating and merging

– Advanced features

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 7

• Overview: Concurrent Versions System (CVS)

DeveloperN@hostM, …

Developer1@host1: Team@server:

Version Control with CVS

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 13

Repository
$CVSROOT

Check out
cvs checkout

Update
cvs update

Create
cvs import

Commit
cvs commit

Compare
cvs diff

Analyze
cvs status
cvs history
cvs log

Modify
vi Initial Files

Developer
Working
Copy

Add, remove
cvs add

cvs remove

• Step 1: Creating a CVS repository
– Repository can host multiple projects (aka. CVS modules)

• One repository per team

– Repository should be located at central position
• On server, team-accessible

– Example: Team eecs22 initializes its CVS repository
• Repository location: ~eecs22/cvsroot on server ladera

Version Control with CVS

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 14

doemer@ladera:1 > ssh eecs22@ladera
eecs22@ladera's password:
Last login: Mon Jan 14 21:28:15 2013 from ladera.eecs.uci.edu
eecs22@ladera:1 > ls cvsroot
ls: cvsroot: No such file or directory
eecs22@ladera:2 > cvs -d ~/cvsroot init
eecs22@ladera:3 > ls cvsroot
CVSROOT/
eecs22@ladera:4 > exit
logout
Connection to ladera closed.
doemer@ladera:2 >

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 8

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 15

Version Control with CVS

• Step 2: Starting a project in the repository
– Example: Team prepares initial file tree and imports the project

• Environment variable CVSROOT points to the repository location

• The Makefile and the src and bin directories are imported

eecs22@ladera:1 > mkdir project
eecs22@ladera:2 > mkdir project/chess
eecs22@ladera:3 > cd project/chess
eecs22@ladera:4 > mkdir init
eecs22@ladera:5 > cd init
eecs22@ladera:6 > vi Makefile
eecs22@ladera:7 > mkdir src bin
eecs22@ladera:8 > setenv CVSROOT ~/cvsroot
eecs22@ladera:9 > cvs import -m "Created initial file tree“

project/chess doemer start
N project/chess/Makefile
cvs import: Importing /users/eecs22/cvsroot/project/chess/src
cvs import: Importing /users/eecs22/cvsroot/project/chess/bin

No conflicts created by this import

eecs22@ladera:10 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 16

Version Control with CVS

• Step 2: Starting a project in the repository
– Example (cont’d): Team inspects the repository

• Repository now contains project/chess/ sub-directory

• Each imported file/directory has a corresponding repository entry

• Each repository file contains all revisions of the corresponding file

Only revision differences are appended (file contents are “diffs”)
eecs22@ladera:10 > ls -la ~/cvsroot/
total 4
drwxrwxr-x 4 eecs22 mysql 512 Jan 14 22:06 ./
drwxr-xr-x 34 eecs22 mysql 1024 Jan 14 22:04 ../
drwxrwxr-x 3 eecs22 mysql 1024 Jan 14 22:04 CVSROOT/
drwxrwxr-x 3 eecs22 mysql 512 Jan 14 22:06 project/
eecs22@ladera:11 > ls -la ~/cvsroot/project/chess/
total 6
drwxrwxr-x 5 eecs22 mysql 512 Jan 14 22:06 ./
drwxrwxr-x 3 eecs22 mysql 512 Jan 14 22:06 ../
drwxrwxr-x 2 eecs22 mysql 512 Jan 14 22:06 bin/
-r--r--r-- 1 eecs22 mysql 405 Jan 14 22:06 Makefile,v
drwxrwxr-x 2 eecs22 mysql 512 Jan 14 22:06 src/
eecs22@ladera:12 >

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 9

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 17

Version Control with CVS

• Step 3: Checking out a project copy
– Example: Team creates a central project check-out

• Directory chkout is created next to the initial init directory

• After the chkout contents are confirmed OK and complete,
the initial init directory tree should be deleted (not used anymore)

eecs22@ladera:12 > cd ~/project/chess
eecs22@ladera:13 > cvs checkout -d chkout project/chess
cvs checkout: Updating chkout
U chkout/Makefile
cvs checkout: Updating chkout/bin
cvs checkout: Updating chkout/src
eecs22@ladera:14 > ls
chkout/ init/
eecs22@ladera:15 > cd chkout/
eecs22@ladera:16 > ls
bin/ CVS/ Makefile src/
eecs22@ladera:17 > cd ..
eecs22@ladera:18 > rm -rf init
eecs22@ladera:19 > ls
chkout/
eecs22@ladera:20 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 18

Version Control with CVS

• Step 4: Checking out a working copy
– Example: Developer prepares a local project checkout

• Directory project/chess is created to host local checkouts

– Preparation: Set CVS environment variables
• CVSROOT access method, login, and server name,

plus absolute path to the repository
• CVS_RSH protocol to use to connect to the server

• CVSUMASK mask for file permissions suitable for teamwork

doemer@ladera:1 > mkdir project
doemer@ladera:2 > mkdir project/chess
doemer@ladera:3 > cd project/chess
doemer@ladera:4 > echo ~eecs22
/users/eecs22
doemer@ladera:5 > setenv CVSROOT

:ext:eecs22@ladera.eecs.uci.edu:/users/eecs22/cvsroot
doemer@ladera:6 > setenv CVS_RSH ssh
doemer@ladera:7 > setenv CVSUMASK 007
doemer@ladera:8 >

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 10

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 19

Version Control with CVS

• Step 4: Checking out a working copy of a project
– Example (cont’d): Developer checks out a local project copy

• Project project/chess is checked out

• Checkout is placed into new directory named chkout

• Created files are updated to latest versions (on main trunk)
• Developer can then start working in chkout directory…

doemer@ladera:8 > cvs checkout -d chkout project/chess
eecs22@ladera.eecs.uci.edu's password:
cvs checkout: Updating chkout
U chkout/Makefile
cvs checkout: Updating chkout/bin
cvs checkout: Updating chkout/src
doemer@ladera:9 > ls
chkout/
doemer@ladera:10 > cd chkout
doemer@ladera:11 > ls
bin/ CVS/ Makefile src/
doemer@ladera:12 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 20

Version Control with CVS

• Step 5: Checking in updated files
– Example (cont’d): Developer works in local project checkout

• Developer modifies/extends the Makefile

• Developer commits the updated Makefile to the repository

– A message describing the change should be attached
• New revision 1.2 of Makefile is checked into the repository

– New Makefile becomes available to other team members

doemer@ladera:12 > vi Makefile
doemer@ladera:13 > cvs commit -m "Added default rules"
cvs commit: Examining .
cvs commit: Examining bin
cvs commit: Examining src
eecs22@ladera.eecs.uci.edu's password:
Checking in Makefile;
/users/eecs22/cvsroot/project/chess/Makefile,v <-- Makefile
new revision: 1.2; previous revision: 1.1
done
doemer@ladera:14 >

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 11

• Step 6: Adding new files
– Example (cont’d): Developer works in local project checkout

• Developer creates a new source file Main.c (in directory src)

• Developer adds and commits the new file to the repository
• (Deleting unused files works the same way with remove)

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 21

Version Control with CVS

doemer@ladera:14 > vi src/Main.c
doemer@ladera:15 > cvs add src/Main.c
eecs22@ladera.eecs.uci.edu's password:
cvs add: scheduling file `src/Main.c' for addition
cvs add: use 'cvs commit' to add this file permanently
doemer@ladera:16 > cvs commit -m "Added Main.c with menu“ src
cvs commit: Examining src
eecs22@ladera.eecs.uci.edu's password:
RCS file: /users/eecs22/cvsroot/project/chess/src/Main.c,v
done
Checking in src/Main.c;
/users/eecs22/cvsroot/project/chess/src/Main.c,v <-- Main.c
initial revision: 1.1
Done
doemer@ladera:17 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 22

Version Control with CVS

• Step 7: Concurrent update, merging
– Example: Developer 1 works in local project checkout

• Developer 1 checks for any updates in the repository

• If no updates are available, status of local files is shown

doemer@ladera:1 > cd project/chess/chkout/
doemer@ladera:2 > ls
bin/ CVS/ Makefile src/
doemer@ladera:3 > cvs update
eecs22@ladera.eecs.uci.edu's password:
cvs update: Updating .
cvs update: Updating bin
cvs update: Updating src
doemer@ladera:4 > vi Makefile
doemer@ladera:5 > cvs update
eecs22@ladera.eecs.uci.edu's password:
cvs update: Updating .
M Makefile
cvs update: Updating bin
cvs update: Updating src
doemer@ladera:6 >

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 12

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 23

Version Control with CVS

• Step 7: Concurrent update, merging
– Example (cont’d): Developer 1 works in local project checkout

• Developer 1 can compare (diff) her/his local files anytime
against the latest revision in the repository

• Comparison against any other revision is also possible
(using the –r revision option)

doemer@ladera:6 > cvs diff Makefile
eecs22@ladera.eecs.uci.edu's password:
Index: Makefile
===
RCS file: /users/eecs22/cvsroot/project/chess/Makefile,v
retrieving revision 1.2
diff -r1.2 Makefile
2a3,6
>
> # module 1 compilation rule
> module1.o: module1.h module1.c
> gcc module1.c -o module.o
doemer@ladera:7 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 24

Version Control with CVS

• Step 7: Concurrent update, merging
– Example (cont’d): Developer 2 works in parallel in team account

• Developer 2 modifies/extends the Makefile

• Developer 2 explicitly checks the status of the Makefile
and finds that a newer version is available in the repository

eecs22@ladera:1 > cd project/chess/chkout/
eecs22@ladera:2 > ls
bin/ CVS/ Makefile src/
eecs22@ladera:3 > vi Makefile
eecs22@ladera:4 > cvs status Makefile
===
File: Makefile Status: Needs Merge

Working revision: 1.1.1.1 Tue Jan 15 06:06:31 2013
Repository revision: 1.2

/users/eecs22/cvsroot/project/chess/Makefile,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

eecs22@ladera:5 >

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 13

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 25

Version Control with CVS

• Step 7: Concurrent update, merging
– Example (cont’d): Developer 2 works in parallel in team account

• Developer 2 modifies/extends the Makefile

• Developer 2 explicitly checks the status of the Makefile

• Developer 2 updates his local checkout, i.e. the Makefile

• Two sets of changes in Makefile are merged (here with conflicts)

eecs22@ladera:5 > cvs update
cvs update: Updating .
RCS file: /users/eecs22/cvsroot/project/chess/Makefile,v
retrieving revision 1.1.1.1
retrieving revision 1.2
Merging differences between 1.1.1.1 and 1.2 into Makefile
rcsmerge: warning: conflicts during merge
cvs update: conflicts found in Makefile
C Makefile
cvs update: Updating bin
cvs update: Updating src
U src/Main.c
eecs22@ladera:6 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 26

Version Control with CVS

• Step 7: Concurrent update, merging
– Example (cont’d): Developer 2 works in parallel in team account

• Developer 2 modifies/extends the Makefile

• Developer 2 explicitly checks the status of the Makefile

• Developer 2 updates his local checkout, i.e. the Makefile

• Two sets of changes in Makefile are merged (here with conflicts)

• Developer 2 resolves the conflicts (an example is shown later)
and commits the merged revision back into the repository

eecs22@ladera:6 > vi Makefile
eecs22@ladera:7 > cvs commit -m "Added rule and resolved conflicts"
cvs commit: Examining .
cvs commit: Examining bin
cvs commit: Examining src
Checking in Makefile;
/users/eecs22/cvsroot/project/chess/Makefile,v <-- Makefile
new revision: 1.3; previous revision: 1.2
done
eecs22@ladera:8 >

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 14

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 27

Version Control with CVS

• Step 7: Concurrent update, merging
– Example (cont’d): Developer 1 works in local project checkout

• Then, after parallel edits in her/his local files,
Developer 1 tries to commit her/his changes to the repository

• CVS examines the local version against the latest revision
in the repository, and finds a newer version

• Developer 1 needs to update and merge her/his version first
before she/he can commit the changes!

doemer@ladera:7 > cvs commit –m “Added my module”
cvs commit: Examining .
cvs commit: Examining bin
cvs commit: Examining src
eecs22@ladera.eecs.uci.edu's password:
cvs commit: Up-to-date check failed for `Makefile'
cvs [commit aborted]: correct above errors first!
cvs commit: saving log message in /tmp/cvsgPQeeD
doemer@ladera:8 >

• Step 7: Concurrent update, merging
– Example (cont’d): Developer 1 works in local project checkout

• Developer 1 updates her/his local Makefile

• CVS merges the missing changes from the repository
into the local Makefile

• Conflicts are found and marked in the updated local Makefile

• Developer 1 needs to resolve these conflicts manually!

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 28

Version Control with CVS

doemer@ladera:8 > cvs update Makefile
eecs22@ladera.eecs.uci.edu's password:
RCS file: /users/eecs22/cvsroot/project/chess/Makefile,v
retrieving revision 1.2
retrieving revision 1.3
Merging differences between 1.2 and 1.3 into Makefile
rcsmerge: warning: conflicts during merge
cvs update: conflicts found in Makefile
C Makefile
doemer@ladera:9 > vi Makefile

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 15

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 29

Version Control with CVS

• Step 7: Concurrent update, merging
– Example (cont’d): Developer 1 works in local project checkout

• Developer 1 opens the Makefile to resolve the conflicts

• Conflicting lines are listed between <<<< and >>>> markers

• In this example, both changes are valid,
only the three marking lines need to be removed!

Makefile:
01/17/13 by R. Doemer

<<<<<<< Makefile
module 1 compilation rule
module1.o: module1.h module1.c

gcc module1.c -o module.o
=======
module2.o: module2.c module2.h

gcc module2.c -o module.o
>>>>>>> 1.3
~
~
"Makefile" 11L, 202C 6,1 All

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 30

Version Control with CVS

• Step 7: Concurrent update, merging
– Example (cont’d): Developer 1 works in local project checkout

• Developer 1 saves the Makefile with the resolved conflicts

• Developer 1 then commits the properly merged version
to the repository

Note: If no message is supplied with the commit command,
the default editor is opened for a log message to be typed in.

doemer@ladera:10 > cvs commit -m "Added my module and fixed merge"
cvs commit: Examining .
cvs commit: Examining bin
cvs commit: Examining src
eecs22@ladera.eecs.uci.edu's password:
Checking in Makefile;
/users/eecs22/cvsroot/project/chess/Makefile,v <-- Makefile
new revision: 1.4; previous revision: 1.3
done
doemer@ladera:11 >

EECS22L: Software Engineering Project in C Lecture 3

(c) 2018 R. Doemer 16

Version Control with CVS

• Advanced CVS features:
– Tagging:

• Revision numbers are automatically assigned by CVS
in increasing order and are generally different for different files

• Specific revisions can be tagged with descriptive name tags
– Example: cvs tag ReleaseAlpha

• Tags can then be used instead of revision numbers

• Advise: Properly tag all releases for easy retrieval later!

– Branching:
• Development branches are created in the repository

– Example: cvs tag –b branch_name

• Development branches can be checked out by name
– Example: cvs checkout –r branch_name

• Development branches can be merged into another branch
– Example: cvs update –j branch_name

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 31

Version Control with CVS

• Advanced CVS features (cont’d):
– Binary files:

• Since revisions are internally stored in diff format,
files are generally assumed to be regular text files

• Binary files (e.g. PDF, JPG, MP3, etc.) must be added
to a CVS repository with –kb option

– Example: cvs add –kb filename

• For more detailed information, read the CVS Manual!
– “Version Management with CVS”

by Per Cederqvist et al.

– Online available at
https://eee.uci.edu/18w/18020/resources.html

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 32

