EECS22L: Software Engineering Project in C

EECS 22L: Software Engineering Project
in C Language
Lecture 3

Rainer Domer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 3: Overview

» Software Development Tools, Overview
— Linux commands and tools
— Scripting languages, shells
— IDEs, source code management tools

« Source Code Management
— Collaborative software development
— Version trees
— Concurrent Versions System (CVS)
»Detailed development example

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 2

(c) 2018 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C

Software Development Tools, Overview

Linux Commands and Tools
— Basic system commands [see EECS22 Lecture 1]

— echo print a message

— date print the current date and time

- Is list the contents of the current directory

— cat list the contents of files

— more list the contents of files page by page

- pwd print the path to the current working directory

— mkdir create a new directory

- cd change the current directory

- cp copy a file

- mv rename and/or move a file

—rm remove (delete) a file

— rmdir remove (delete) a directory

— man view manual pages for system commands and tools
EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 3

Software Development Tools, Overview

Linux Commands and Tools

Text editors [see EECS22 Lecture 1]

— Vi standard Unix editor

— vim vi-improved (supports syntax highlighting, and much more...)
» Can compare two files (like di) and visualize the differences
e vim —d fibonacci.c fibonacci2.c

— pico easy-to-use text editor

— emacs very powerful editor

— gedit nice GUI editor in separate X-window

— Manual page creation
— groff simple text formatter
e groff -man -Tascii man/manl/name.l >man/catl/name.l
— Online how-to page:
http://www.linuxhowtos.org/System/creatingman.htm

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 4

(c) 2018 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C

Software Development Tools, Overview

* Linux Commands and Tools

Advanced file system commands
— gtar GNU tape archiver, manage a “tar-ball” package
e gtar cvzf package.tar.gz files.. (create an archive)
= gtar tvzf package.tar.gz (view an archive’s contents)
= gtar xvzf package.tar.gz (extract an archive)
— In create (symbolic or hard) links to files
e In —s path_to_file link_name
— chmod set file access permissions
e Is -1 filename
e chmod u+rwx,g+rx-w,o-rwx Ffilename
= chmod 750 filename
— groups list group memberships of a user
— chgrp change group for a file
e chgrp team7 filename

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 5

Software Development Tools, Overview

» Scripting Languages
— Build scripts
= make, Makefile [see EECS22 Lecture 11]

— Cross-platform Make
= cmake

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 6

(c) 2018 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C

Software Development Tools, Overview

» General Purpose Shell and Scripting Languages
— Unix shell, and GNU bourne-again shell
= sh
= bash
— Berkeley Unix C shell, and extension
= csh
= tcsh

» Remote Shells

— Secure shell

e ssh user@hostname.domain

e scp user@hostname.domain:sourcefile targetfile
— Insecure (!) remote shells

e rsh

* telnet

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 7

Software Development Tools, Overview

 Integrated Development Environment
— eclipse

» Software Documentation Generator
— doxygen

+ Source Code Management

Concurrent Versions System [see details in following slides!]
cvs checkout ...

Subversion
svn checkout ...

Git (the current Linux kernel source code management tool)
git clone ...

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 8

(c) 2018 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C

Source Code Management

+ Source Code Management
— Also known as Version Control
— or Configuration Management

* Purpose and Goals
Team-based, concurrent software development
Access control
Archive for software development and versions
Efficient storage space usage with remote access
Common data base with records of

* Source code, documentation, and other build files

» Versions and revisions

» Branches and merges

« History and log information

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 9

Source Code Management

» Collaborative Software Development
» Shared but dependent source code files!
— Two options:
» Single modifications with file locking
— Ensures that no two developers modify the same file at same time
— But has drawbacks:
» Locking may be forgotten
» Locking may lead to deadlocks (!)

» Locally modified files may lead to mismatches with locked
ones...

» Multiple modifications with merging
— Multiple developers work on the same files at the same time
» Multiple modifications are allowed, different versions exist!

— Files are merged when inserted into the common code base
(“merge and commit to the repository”)

» Merging can often be performed automatically!

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 10

(c) 2018 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C

* Version Trees

— Software products consist of versions
* Release versions (externally visible)
» Development revisions (internal only)

multiple parallel branches
» Separate common vs. feature files
» Only a few of the files actually differ
— Version trees consist of
* Major release versions (e.g. 1.0, 2.0, 3.0)

* Root (e.g. revision 0.0) and main trunk

» Branches for features (1.0.1, 1.0.2, ...)
— May be active (open) or dead (closed)
— May be merged into other branches

EECS22L: Software Engineering Project in C, Lecture 3

— Concurrent feature development requires

* Minor development revisions (e.g. 1.1, 1.2, ...)

Source Code Management

(c) 2018 R. Doemer

» Version Control with
Concurrent Versions System (CVS)
— Overview

Creating a CVS repository

Starting a project

Checking out a project

Checking in updated files

Adding new files

Concurrent updating and merging

Advanced features

EECS22L: Software Engineering Project in C, Lecture 3

Source Code Management

(c) 2018 R. Doemer

(c) 2018 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C

Version Control with CVS

» Overview: Concurrent Versions System (CVS)

Developer1@host1:

Team@server:

Modify Check out
cvs checkout

Initial Files

Update
Developer
Working cvs update
Co E
Py Compare
cvs diff
Commit

Analyze

cvs status Add, remove

cvs history cvs add
cvs log CVS remove

cvs commit

Create
cvs import

[

[

DeveloperN@hostM, ...

EECS22L: Software Engineering Project in C, Lecture 3

(c) 2018 R. Doemer

Version Control with CVS

» Step 1: Creating a CVS repository

— Repository can host multiple projects (aka. CVS modules)

* One repository per team

— Repository should be located at central position

« On server, team-accessible

— Example: Team eecs?22 initializes its CVS repository

* Repository location: ~eecs22/cvsroot on server ladera

eecs22@ladera®s password:

eecs22@ladera:1 > Is cvsroot

eecs22@ladera:3 > Is cvsroot
CVSROOT/

eecs22@ladera:4 > exit
logout

Connection to ladera closed.
doemer@ladera:2 >

doemer@ladera:1 > ssh eecs22@ladera

Is: cvsroot: No such file or directory
eecs22@ladera:2 > cvs -d ~/cvsroot init

Last login: Mon Jan 14 21:28:15 2013 from ladera.eecs.uci.edu

EECS22L: Software Engineering Project in C, Lecture 3

(c) 2018 R. Doemer

(c) 2018 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C

Version Control with CVS =

Step 2: Starting a project in the repository
— Example: Team prepares initial file tree and imports the project

* Environment variable CVSROOT points to the repository location
* The Makefile and the src and bin directories are imported

eecs22@ladera:1 > mkdir project

eecs22@ladera:2 > mkdir project/chess

eecs22@ladera:3 > cd project/chess

eecs22@ladera:4 > mkdir init

eecs22@ladera:5 > cd init

eecs22@ladera:6 > vi Makefile

eecs22@ladera:7 > mkdir src bin

eecs22@ladera:8 > setenv CVSROOT ~/cvsroot

eecs22@ladera:9 > cvs import -m "Created initial file tree*

project/chess doemer start

N project/chess/Makefile
cvs import: Importing Zusers/eecs22/cvsroot/project/chess/src
cvs import: Importing Zusers/eecs22/cvsroot/project/chess/bin

No conflicts created by this import

eecs22@ladera:10 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 15

[

Version Control with CVS

Step 2: Starting a project in the repository
— Example (cont'd): Team inspects the repository

* Repository now contains project/chess/ sub-directory

» Each imported file/directory has a corresponding repository entry
» Each repository file contains all revisions of the corresponding file

» Only revision differences are appended (file contents are “diffs”)

eecs22@ladera:10 > Is -la ~/cvsroot/

total

4

drwxrwxr-x 4 eecs22 mysql 512 Jan 14 22:06 ./
drwxr-xr-x 34 eecs22 mysql 1024 Jan 14 22:04 ../
drwxrwxr-x 3 eecs22 mysql 1024 Jan 14 22:04 CVSROOT/
drwxrwxr-x 3 eecs22 mysql 512 Jan 14 22:06 project/
eecs22@ladera:11 > Is -la ~/cvsroot/project/chess/

total

drwxrwxr-x

drwxrwxr-x

6
eecs22 mysql 512 Jan 14 22:06 ./

eecs22 mysql 512 Jan 14 22:06 bin/

5

drwxrwxr-x 3 eecs22 mysqgl 512 Jan 14 22:06 ../
2
1

-r--r--r--

eecs22 mysql 405 Jan 14 22:06 Makefile,v

drwxrwxr-x 2 eecs22 mysqgl 512 Jan 14 22:06 src/
eecs22@ladera:12 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 16

(c) 2018 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C

Version Control with CVS

» Step 3: Checking out a project copy

— Example: Team creates a central project check-out
» Directory chkout is created next to the initial init directory

» After the chkout contents are confirmed OK and complete,
the initial init directory tree should be deleted (not used anymore)

eecs22@ladera:12 > cd ~/project/chess
eecs22@ladera:13 > cvs checkout -d chkout project/chess
cvs checkout: Updating chkout

U chkout/Makefile

cvs checkout: Updating chkout/bin

cvs checkout: Updating chkout/src
eecs22@ladera:14 > Is

chkout/ init/

eecs22@ladera:15 > cd chkout/
eecs22@ladera:16 > Is

bin/ CVS/ Makefile src/
eecs22@ladera:17 > cd ..
eecs22@ladera:18 > rm -rf init
eecs22@ladera:19 > Is

chkout/

eecs22@ladera:20 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 17

Chack oul

Version Control with CVS .-

orking
Copy

» Step 4: Checking out a working copy

— Example: Developer prepares a local project checkout
» Directory project/chess is created to host local checkouts
— Preparation: Set CVS environment variables
e CVSROOT access method, login, and server name,
plus absolute path to the repository
= CVS_RSH protocol to use to connect to the server
= CVSUMASK mask for file permissions suitable for teamwork

doemer@ladera:1

doemer@ladera:2

doemer@ladera:3

doemer@ladera:4

/users/eecs22

doemer@ladera:5 > setenv CVSROOT
sext:eecs22@ladera.eecs.uci.edu:/users/eecs22/cvsroot

doemer@ladera:6 > setenv CVS_RSH ssh

doemer@ladera:7 > setenv CVSUMASK 007

doemer@ladera:8 >

mkdir project
mkdir project/chess
cd project/chess

>
>
>
> echo ~eecs22

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 18

(c) 2018 R. Doemer

Lecture 3

EECS22L: Software Engineering Project in C Lecture 3

Chack oul

Version Control with CVS ..

orking

» Step 4: Checking out a working copy
— Example (cont’d): Developer checks out a local project copy
* Project project/chess is checked out
» Checkout is placed into new directory named chkout
» Created files are updated to latest versions (on main trunk)
» Developer can then start working in chkout directory...

doemer@ladera:8 > cvs checkout -d chkout project/chess
eecs22@ladera.eecs.uci.edu”s password:
cvs checkout: Updating chkout

U chkout/Makefile

cvs checkout: Updating chkout/bin

cvs checkout: Updating chkout/src
doemer@ladera:9 > Is

chkout/

doemer@ladera:10 > cd chkout
doemer@ladera:11 > Is

bin/ CVS/ Makefile src/
doemer@ladera:12 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 19

i

Version Control with CVS

i

ving
Copy.

» Step 5: Checking in updated files
— Example (cont’d): Developer works in local project checkout
» Developer modifies/extends the Makefile
» Developer commits the updated Make¥Fi le to the repository
— A message describing the change should be attached
* New revision 1.2 of Makefi le is checked into the repository
— New Makefile becomes available to other team members

doemer@ladera:12 > vi Makefile

doemer@ladera:13 > cvs commit -m "Added default rules"
cvs commit: Examining .

cvs commit: Examining bin

cvs commit: Examining src

eecs22@ladera.eecs.uci.edu”s password:

Checking in Makefile;
/users/eecs22/cvsroot/project/chess/Makefile,v <-- Makefile
new revision: 1.2; previous revision: 1.1

done

doemer@ladera:14 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 20

(c) 2018 R. Doemer 10

EECS22L: Software Engineering Project in C

Version Control with CVS .. —

kg
Copy

+ Step 6: Adding new files

— Example (cont’d): Developer works in local project checkout
» Developer creates a new source file Main.c (in directory src)

» Developer adds and commits the new file to the repository
» (Deleting unused files works the same way with remove)

doemer@ladera:14 > vi src/Main.c

doemer@ladera:15 > cvs add src/Main.c
eecs22@ladera.eecs.uci.edu”s password:

cvs add: scheduling file “src/Main.c® for addition

cvs add: use "cvs commit®™ to add this file permanently
doemer@ladera:16 > cvs commit -m "Added Main.c with menu* src
cvs commit: Examining src

eecs22@ladera.eecs.uci.edu”s password:

RCS file: /users/eecs22/cvsroot/project/chess/src/Main.c,v
done

Checking in src/Main.c;
/users/eecs22/cvsroot/project/chess/src/Main.c,v <-- Main.c
initial revision: 1.1

Done

doemer@ladera:17 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 21

Version Control with CVS o — 5 e

» Step 7: Concurrent update, merging

— Example: Developer 1 works in local project checkout
» Developer 1 checks for any updates in the repository
» If no updates are available, status of local files is shown

doemer@ladera:1 > cd project/chess/chkout/
doemer@ladera:2 > Is

bin/ CVS/ Makefile src/
doemer@ladera:3 > cvs update
eecs22@ladera.eecs.uci.edu”s password:
cvs update: Updating .

cvs update: Updating bin

cvs update: Updating src
doemer@ladera:4 > vi Makefile
doemer@ladera:5 > cvs update
eecs22@ladera.eecs.uci.edu”s password:
cvs update: Updating .

M Makefile

cvs update: Updating bin

cvs update: Updating src
doemer@ladera:6 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 22

(c) 2018 R. Doemer

Lecture 3

11

EECS22L: Software Engineering Project in C

Mcxsty Check out

Version Control with CVS - o Lt

Devmicgar
Werkrrg
Coory

C ey
Anxwex
reemorn

+ Step 7: Concurrent update, merging =

— Example (cont’d): Developer 1 works in local project checkout
» Developer 1 can compare (diff) her/his local files anytime
against the latest revision in the repository

» Comparison against any other revision is also possible
(using the —r revision option)

doemer@ladera:6 > cvs diff Makefile
eecs22@ladera.eecs.uci.edu”s password:
Index: Makefile

RCS file: /users/eecs22/cvsroot/project/chess/Makefile,v
retrieving revision 1.2

diff -r1.2 Makefile

2a3,6

>

> # module 1 compilation rule

> modulel.o: modulel.h modulel.c

> gcc modulel.c -o module.o

doemer@ladera:7 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 23
. . Mol ot | [|
Version Control with CVS | s e
vy pare

- Step 7: Concurrent update, merging = S

— Example (cont’d): Developer 2 works in parallel in team account
» Developer 2 modifies/extends the Makefile
» Developer 2 explicitly checks the status of the MakeFfile
and finds that a newer version is available in the repository

eecs22@ladera:1 > cd project/chess/chkout/
eecs22@ladera:2 > Is

bin/ CVS/ Makefile src/

eecs22@ladera:3 > vi Makefile
eecs22@ladera:4 > cvs status MakeFfile

File: MakeFfile Status: Needs Merge

Working revision: 1.1.1.1 Tue Jan 15 06:06:31 2013
Repository revision: 1.2
/users/eecs22/cvsroot/project/chess/Makefile,v

Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

eecs22@ladera:5 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 24

(c) 2018 R. Doemer

Lecture 3

12

EECS22L: Software Engineering Project in C

Version Control with CVS T~ e

G
« Step 7: Concurrent update, merging ::ié;mr

— Example (cont’d): Developer 2 works in parallel in team account
» Developer 2 modifies/extends the Makefile
» Developer 2 explicitly checks the status of the MakeFile
» Developer 2 updates his local checkout, i.e. the MakeFfile
» Two sets of changes in MakeTfi le are merged (here with conflicts)

eecs22@ladera:5 > cvs update

cvs update: Updating -

RCS file: /users/eecs22/cvsroot/project/chess/Makefile,v
retrieving revision 1.1.1.1

retrieving revision 1.2

Merging differences between 1.1.1.1 and 1.2 into Makefile
rcsmerge: warning: conflicts during merge

cvs update: conflicts found in Makefile

C Makefile

cvs update: Updating bin

cvs update: Updating src

U src/Main.c

eecs22@ladera:6 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 25

Version Control with CVS oo 5 .

» Step 7: Concurrent update, merging {” oy
— Example (cont’d): Developer 2 works in parallel in team account
» Developer 2 modifies/extends the Makefile
» Developer 2 explicitly checks the status of the MakeFile
» Developer 2 updates his local checkout, i.e. the MakeFfile
» Two sets of changes in MakeTfi le are merged (here with conflicts)

» Developer 2 resolves the conflicts (an example is shown later)
and commits the merged revision back into the repository

eecs22@ladera:6 > vi Makefile

eecs22@ladera:7 > cvs commit -m "Added rule and resolved conflicts"
cvs commit: Examining .

cvs commit: Examining bin

cvs commit: Examining src

Checking in Makefile;
/users/eecs22/cvsroot/project/chess/Makefile,v <-- Makefile

new revision: 1.3; previous revision: 1.2

done

eecs22@ladera:8 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 26

(c) 2018 R. Doemer

Lecture 3

13

EECS22L: Software Engineering Project in C

Version Control with CVS = — 5.

- Step 7: Concurrent update, merging & S

— Example (cont'd): Developer 1 works in Iocal project checkout
» Then, after parallel edits in her/his local files,
Developer 1 tries to commit her/his changes to the repository
» CVS examines the local version against the latest revision
in the repository, and finds a newer version
» Developer 1 needs to update and merge her/his version first
before she/he can commit the changes!

doemer@ladera:7 > cvs commit —m “Added my module”
cvs commit: Examining .

cvs commit: Examining bin

cvs commit: Examining src
eecs22@ladera.eecs.uci.edu”s password:

cvs commit: Up-to-date check failed for “Makefile*
cvs [commit aborted]: correct above errors first!
cvs commit: saving log message in /tmp/cvsgPQeeD
doemer@ladera:8 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 27

sy Check cut

Version Control with CVS

« Step 7: Concurrent update, merging == =
— Example (cont’d): Developer 1 works in local project checkout
» Developer 1 updates her/his local Makefile

» CVS merges the missing changes from the repository
into the local Makefile

» Conflicts are found and marked in the updated local Makefile
» Developer 1 needs to resolve these conflicts manually!

doemer@ladera:8 > cvs update Makefile
eecs22@ladera.eecs.uci.edu”s password:

RCS file: /users/eecs22/cvsroot/project/chess/Makefile,v
retrieving revision 1.2

retrieving revision 1.3

Merging differences between 1.2 and 1.3 into Makefile
rcsmerge: warning: conflicts during merge

cvs update: conflicts found in Makefile

C Makefile

doemer@ladera:9 > vi Makefile

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 28

(c) 2018 R. Doemer

Lecture 3

14

EECS22L: Software Engineering Project in C

Mty Check out

Version Control with CVS e

Devmicgar . eva Lspore
Working
Copy

. | 5

e
Ve AT

- Step 7: Concurrent update, merging = %
— Example (cont’d): Developer 1 works in local project checkout
» Developer 1 opens the Makefi le to resolve the conflicts
» Conflicting lines are listed between <<<< and >>>> markers

« In this example, both changes are valid,
only the three marking lines need to be removed!

Makefile:
01/17/13 by R. Doemer

<<<<<<< MakefFile

module 1 compilation rule

modulel.o: modulel.h modulel.c
gcc modullel.c -o module.o

module2.0: module2.c module2.h
gcc module2.c -o module.o
>S>>>>>> 1.3

"Makefile" 11L, 202C 6,1 All
EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 29
. . Mol oor maatur| [fiwairie |
Version Control with CVS s

Devmicgar . eva Lspore
Working
Copy

- Step 7: Concurrent update, merging = %
— Example (cont’d): Developer 1 works in local project checkout
» Developer 1 saves the Makefi le with the resolved conflicts
» Developer 1 then commits the properly merged version
to the repository
» Note: If no message is supplied with the commit command,
the default editor is opened for a log message to be typed in.

doemer@ladera:10 > cvs commit -m ""Added my module and fixed merge"
cvs commit: Examining .

cvs commit: Examining bin

cvs commit: Examining src

eecs22@ladera.eecs.uci.edu”s password:

Checking in Makefile;
/users/eecs22/cvsroot/project/chess/Makefile,v <-- Makefile

new revision: 1.4; previous revision: 1.3

done

doemer@ladera:11 >

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 30

(c) 2018 R. Doemer

Lecture 3

15

EECS22L: Software Engineering Project in C Lecture 3

Version Control with CVS

* Advanced CVS features:
— Tagging:
» Revision numbers are automatically assigned by CVS
in increasing order and are generally different for different files
» Specific revisions can be tagged with descriptive name tags
— Example: cvs tag ReleaseAlpha
» Tags can then be used instead of revision numbers
» Advise: Properly tag all releases for easy retrieval later!
— Branching:
« Development branches are created in the repository
— Example: cvs tag —b branch_name
» Development branches can be checked out by name
— Example: cvs checkout —r branch_name
» Development branches can be merged into another branch
— Example: cvs update —j branch_name

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 31

Version Control with CVS

* Advanced CVS features (cont'd):
— Binary files:
« Since revisions are internally stored in diff format,
files are generally assumed to be regular text files

» Binary files (e.g. PDF, JPG, MP3, etc.) must be added
to a CVS repository with —kb option
— Example: cvs add —kb Ffilename

* For more detailed information, read the CVS Manual!

— “Version Management with CVS”
by Per Cederqvist et al.

— Online available at
https://eee.uci.edu/18w/18020/resources._html

EECS22L: Software Engineering Project in C, Lecture 3 (c) 2018 R. Doemer 32

(c) 2018 R. Doemer 16

