
EECS22L: Software Engineering Project in C Lecture 8

(c) 2018 R. Doemer 1

EECS 22L: Software Engineering Project
in C Language

Lecture 8

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22L: Software Engineering Project in C, Lecture 8 (c) 2018 R. Doemer 2

Lecture 8: Overview

• Project 2 Technical Discussion and Advise
– Application specification

– Client-server software architecture

• Introduction to Socket Communication
– Basic terms and concepts

– Client-server example



EECS22L: Software Engineering Project in C Lecture 8

(c) 2018 R. Doemer 2

Project 2: Software Specification

• Introduction
– Chat Tool

• Instant Text Messaging Application

A. User App
• Register user’s account name, password, IP address, etc.

• Login, uppdate user’s status: available, idle, or offline

• List available users, add/delete contacts

• Chat with text messages, images, …

B. Provider Service
• Management of user accounts and contact information

• Service users’ login and requests

• Maintain users’ status, IP addresses, port numbers, …

EECS22L: Software Engineering Project in C, Lecture 8 (c) 2018 R. Doemer 3

Project 2: Software Architecture

• Client-Server Software Architecture
– Software applications communicating via the Internet

– Server: provides a service function to one or more clients

– Client: initiates requests for service

– Internet: communication network to exchange messages

EECS22L: Software Engineering Project in C, Lecture 8 (c) 2018 R. Doemer 4

Source: David Vignoni (LGPL, wikipedia.org)



EECS22L: Software Engineering Project in C Lecture 8

(c) 2018 R. Doemer 3

Project 2: Client-Server Architecture

• Introduction to Internet Communication
– Basic terms and concepts

• Point-to-point communication, often designed as client-server model
• Client initiates communication, sends a request
• Server waits, services client request, sends a response
• Client and server are software processes executing on hosts
• Hosts are typically distributed (networked), but can also be identical
• Sockets represent a network connection between two processes
• Sockets operate bidirectional (both sides can send and receive)
• Stream sockets implement connection-oriented semantics

– Data is transported reliably in-order, without loss or duplication
– Transmission Control Protocol over Internet Protocol, TCP/IP

• Hosts have Internet Protocol (IP) addresses and ports
– Host crystalcove.eecs.uci.edu has IP address 128.200.85.14

– Ports below 1024 are reserved (e.g. port 80 for web browsing)
– Ports above 2000 are typically “free” for application-specific use

EECS22L: Software Engineering Project in C, Lecture 8 (c) 2018 R. Doemer 5

Project 2: Client-Server Architecture

• Introduction to Socket Communication
– Sockets Tutorial

• http://www.linuxhowtos.org/C_C++/socket.htm

• http://www.linuxhowtos.org/data/6/client.c

• http://www.linuxhowtos.org/data/6/server.c

– Reference: Linux manual pages
• man socket

• man select

• man select_tut

– Extended client-server example:
~eecs22/SocketTutorial.tar.gz
• client2.c

• server2.c

• Makefile

• README

 Online demonstration!

EECS22L: Software Engineering Project in C, Lecture 8 (c) 2018 R. Doemer 6



EECS22L: Software Engineering Project in C Lecture 8

(c) 2018 R. Doemer 4

Project 2: Client-Server Architecture

• Discussion on Socket Communication
– Sequence Diagram for client-server example

 This simple example can handle only one client at a time!
 The listen() function keeps connecting clients in a back log

where they need to wait until other clients have closed their connection

EECS22L: Software Engineering Project in C, Lecture 8 (c) 2018 R. Doemer 7

socket()
bind()
listen()

accept()
read()
write()

close()
exit()

Server

socket()

connect()
write()

read()
close()
exit()

Client

Project 2: Client-Server Architecture

• Communication Example: Initial Chat App
– Client: Hello!

– Server: ERROR invalid message “Hello!”

– Client: CREATE_ACCOUT Albert Einstein AE

– Server: OK AE = Albert Einstein

– Client: GET CONTACTS AE

– Server: OK IN = Isaac Newton, NT = Nikola Tesla

– Client: SEND_MESSAGE NT Hello Nikola, how are you?

– Server: OK

– Client: RECEIVE_MESSAGES

– Server: OK NT=“I’m fine, thanks!”, END_OF_MESSAGES

EECS22L: Software Engineering Project in C, Lecture 8 (c) 2018 R. Doemer 8


