
EECS22L: Software Engineering Project in C Lecture 9

(c) 2018 R. Doemer 1

EECS 22L: Software Engineering Project
in C Language

Lecture 9

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2018 R. Doemer 2

Lecture 9: Overview

• Project 2 Technical Discussion and Advise
– Client-server software architecture

• Discussion on Socket Communication
– Client-server example

– Blocking I/O communication

– Multiplexing multiple connections

– Clock server example



EECS22L: Software Engineering Project in C Lecture 9

(c) 2018 R. Doemer 2

Project 2: Software Architecture

• Client-Server Software Architecture
– Software applications communicating via the Internet

– Server: provides a service function to one or more clients

– Client: initiates requests for service

– Internet: communication network to exchange messages

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2018 R. Doemer 3

Source: David Vignoni (LGPL, wikipedia.org)

Project 2: Client-Server Communication

• Discussion on Socket Communication
– Sockets Tutorial

• http://www.linuxhowtos.org/C_C++/socket.htm

• http://www.linuxhowtos.org/data/6/client.c

• http://www.linuxhowtos.org/data/6/server.c

– Reference: Linux manual pages
• man socket

• man select

• man select_tut

– Extended client-server example:
~eecs22/SocketTutorial.tar.gz
• client2.c

• server2.c

 This example can handle only one client at a time,
others have to wait for their turn to connect

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2018 R. Doemer 4



EECS22L: Software Engineering Project in C Lecture 9

(c) 2018 R. Doemer 3

Project 2: Client-Server Communication

• Discussion on Socket Communication
– Sequence Diagram for client-server example

 This simple example can handle only one client at a time,
others have to wait for their turn to connect (they are blocked)

 Blocking communication can stall both the client and the server!

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2018 R. Doemer 5

socket()
bind()
listen()

accept()
read()
write()

close()
exit()

Server

socket()

connect()
write()

read()
close()
exit()

Client

Project 2: Client-Server Architecture

• Communication Example: Initial Chat App
– Client: Hello!

– Server: ERROR invalid message “Hello!”

– Client: CREATE_ACCOUT Albert Einstein AE

– Server: OK AE = Albert Einstein

– Client: GET CONTACTS AE

– Server: OK IN = Isaac Newton, NT = Nikola Tesla

– Client: SEND_MESSAGE NT Hello Nikola, how are you?

– Server: OK

– Client: RECEIVE_MESSAGES

– Server: OK NT=“I’m fine, thanks!”, END_OF_MESSAGES

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2018 R. Doemer 6

Avoid a possibly long delay
for the other client to respond!



EECS22L: Software Engineering Project in C Lecture 9

(c) 2018 R. Doemer 4

Project 2: Client-Server Architecture

• Discussion on Socket Communication
– Handling multiple active client connections

• Option 1: Parallel/concurrent (asynchronous) I/O
– Use multiple processes (fork()) or threads (pthread_create())

– Requires Operating System (OS) knowledge (i.e. EECS 111),
and very careful programming to avoid race-conditions and deadlocks

• Option 2: Synchronous I/O multiplexing
– Wait on multiple I/O requests, handle them first-come-first-served (FCFS)
– Function select() monitors multiple file descriptors, with timeout option

 Multiplexing multiple connections with select()

– Clock server example: ~eecs22/ClockServer.tar.gz
• ClockServer.c

• ClockClient.c

• Makefile, README

 Online demonstration!

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2018 R. Doemer 7

• Multiplexing multiple client connections with select()
– ClockServer example: ~eecs22/ClockServer.tar.gz

 Wait simultaneously to connect, to transfer data, or for time-out!

 Keep sequential execution short

 Limit client-server interaction to one request at a time

Project 2: Client-Server Architecture

EECS22L: Software Engineering Project in C, Lecture 9 (c) 2018 R. Doemer 8

socket()
bind()
listen()

accept() read()

write()

close()

exit()

ClockServer

socket()
connect()

write()

read()

close()

exit()

ClockClient

select()

printf()

fflush()

connect
data time-out


