
1

Embedded Systems Modeling and Design
ECPS 203
Fall 2019

Assignment 5

Posted: October 30, 2019
Due: November 6, 2019 at 6pm

Topic: Test bench model of the Canny Edge Decoder in SystemC

1. Setup:

This assignment is the next step in modeling our application example, the Canny Edge Detector,
as a proper system-level specification model which we can then use to design our embedded
system target implementation. In this assignment, we will create a SystemC model with a
suitable top-level structural hierarchy including a test bench.

We will use the same Linux account and the same remote servers as for the previous
assignments. Start by creating a new working directory, so that you can properly submit your
deliverables in the end.

mkdir hw5
 cd hw5

As before, our video is available in a shared directory on the server. In addition, we want to use
the video frames extracted in Assignment 4. To save disk space, do not copy the data into your
new directory, but create symbolic links to it, as follows:

ln –s ~ecps203/public/DroneFootage DroneFootage
ln –s ~/hw4/video video

As starting point for your SystemC model, you can use your own C++ model which you have
created in the previous Assignment 4. Alternatively, you may start from the provided solution for
Assignment 4 which you can copy as follows:

 cp ~ecps203/public/CannyA4_ref.cpp Canny.cpp

For your convenience, we also provide a simple Makefile for use in this assignment which you
can copy as follows:

 cp ~ecps203/public/MakefileA5 Makefile

A simple call to make will then compile your model into an executable, and a call to make test
will simulate the model and compare the generated edge images against the reference images
provided in the video directory.

2

2. Creating a test bench model with top-level structural hierarchy

Step 1: Create a test bench and platform structure for your SystemC model

The purpose of this assignment is to introduce a proper test bench and overall structural
hierarchy into our application model. In particular, we will introduce the top-level module Top.
This will consist of three modules, namely Stimulus, Platform, and Monitor. The
Platform module, in turn, should contain a dedicated input unit DataIn, an output unit
DataOut, and the actual design under test DUT.

Specifically, your model should be structured as the following instance tree shows:

Top top
|------ Monitor monitor
|------ Platform platform
| |------ DUT canny
| |------ DataIn din
| |------ DataOut dout
| |------ sc_fifo<IMAGE> q1
| \------ sc_fifo<IMAGE> q2
|------ Stimulus stimulus
|------ sc_fifo<IMAGE> q1
\------ sc_fifo<IMAGE> q2

For communication, we will instantiate FIFO-type channels from the SystemC standard library.
Specifically, use the regular first-in-first-out primitive channel sc_fifo<IMAGE> where template
parameter IMAGE is the type of the data you need to communicate. Since IMAGE is an array
and C++ does not provide an operator for array assignment, however, we need to wrap the
array into a proper class with overloaded operators. To simplify this technicality, you may copy
the class IMAGE from this provided file:

~ecps203/public/Image.cpp

Since sc_fifo channels are not well described in the presented Doulos slides, this section
summarizes the use of the standard sc_fifo channel in SystemC. The type of this standard
primitive channel is sc_fifo, so an instance of this channel can be defined as sc_fifo ch1;
To set the size of the buffer in the channel (which defaults to 16), you pass the desired buffer
size to the constructor call, for example, ch1("ch1", size). For our example, use the value
1 here, which will allow at most 1 image to be stored inside the channel. This will be sufficient
freedom for the model to run, while it will not introduce any extra delay stages at the same time.

The sc_fifo channel offers a number of interface methods, but the main two methods are
void read(T &data) and void write(T &data). While it is possible to build your own
ports (using sc_port), there are predefined port types available, namely sc_fifo_in and
sc_fifo_out. When instantiated, you can communicate via such ports by simply calling
PortOut.write(myData) or PortIn.read(myData).

To connect ports to channels, just bind the ports to the channel instance in the constructor of
the parent module (or in the before_end_of_elaboration function). An example looks like
this: stimulus.PortOut.bind(ch1).

3

For the above described top-level structural hierarchy, a total of four channel instances will be
needed, two at the test bench level (Top module), and two within the Platform module.

Specifically, the Top module should instantiate Stimulus, Platform and Monitor modules
in parallel. The Stimulus module should read the input image from the file system and pass it
into the Platform via the first queue channel. Correspondingly, the Monitor should receive
via the second channel the generated edge image from the Platform and write it out into an
output file.

In the Platform module, the DataIn module should, in an endless loop, receive an input
image and pass it unmodified to the DUT. Similar, the DataOut module should, also in an
endless loop, receive an input image from the DUT and pass it on. These two instances will be
needed later during model refinement. They will allow our test bench to remain unmodified even
when later in the design flow the communication to the DUT is implemented via detailed bus
protocols.

Finally, the DUT module should contain the entire Canny algorithm source code. Its main thread
will receive an image via the input port, call the canny() function to process it, and then send
out the edge image via the output port. Since our target embedded system will never stop
working (unless its power is turned off), this processing will run in an endless loop, similar as the
infinite loops in the DataIn and DataOut modules.

Throughout your model recoding, ensure that it still compiles, simulates, and generates the
correct output images. You are done with this assignment when the hierarchy described above
has been created and your code compiles fine without errors or warnings.

In the end, your final model should not contain any global functions (except for sc_main),
neither any global variables, nor any wait-for-time statements. For communication, only
standard sc_fifo channels with proper port connections should be used (no plain events or
user-defined channels).

Hint 1: Visualize your model

My research group has created the Recoding Infrastructure for SystemC (RISC) which offers
several tools for SystemC model analysis and parallel simulation. For this assignment, the RISC
visual tool is very helpful, as it can automatically render a graphical display of the SystemC
model structure.

The RISC v0.5.0 software package has been installed on our department servers. To use the
RISC visual tool, setup your environment and use the tool on your model, as follows:

source /opt/pkg/risc_v0.5.0/bin/setup.csh
visual Canny.cpp

When properly structured and connected, your model at this stage should look as follows:

4

Hint 2: Increase stack sizes

As we have already seen in the previous Assignment 4, stack size is an issue that requires
special attention due to the large image sizes we now are now stored in local variables. For
SystemC models in particular, there are two considerations. First, the stack size of the root
thread must be configured the same way as we did for regular programs in Assignment 4.

echo $SHELL

If you use the csh or tcsh shell, then adjust your root thread stack size as follows:

limit stacksize 128 megabytes

On the other hand, if you use the sh or bash shell, then set your root thread stack size like this:

ulimit -s 128000

Second, for every SC_THREAD in your model, you need to increase its stack size as well. In
SystemC, this is accomplished by a statement set_stack_size(128*1024*1024); which
directly follows the corresponding SC_THREAD() statement.

3. Submission:

For this assignment, submit the following deliverables:

Canny.cpp
Canny.txt

Again, the text file should briefly mention whether or not your efforts were successful and what
(if any) problems you encountered. Please be brief!

To submit these files, change into the parent directory of your hw5 directory and run the
~ecps203/bin/turnin.sh script. As before, remember that you can use the turnin-script to

5

submit your work at any time before the deadline, but not after! Since you can submit as many
times as you want (newer submissions will overwrite older ones), it is highly recommended to
submit early and even incomplete work, in order to avoid missing the hard deadline.

Late submissions will not be considered!

To double-check that your submitted files have been received, you can run the
~ecps203/bin/listfiles.py script.

For any technical questions, please use the course message board.

--
Rainer Doemer (EH3217, x4-9007, doemer@uci.edu)

