
1

Embedded Systems Modeling and Design
ECPS 203
Fall 2019

Assignment 7

Posted: November 13, 2019
Due: November 20, 2019 at 6pm

Topic: Performance measurement of the Canny Edge Detector on prototyping board

1. Setup:

This assignment continues the Canny Edge Detector project from the application source code
produced in Assignment 4 (not 6!). While our SystemC model can be simulated on the Linux
servers and provide relative timing measurements (Assignment 6), we will need to also obtain
some absolute measurements on the target platform to estimate the expected real-time
performance there.

Thus, we will take the application C++ model and measure its run time on the Raspberry Pi
prototyping board. These measurements will then serve as an absolute reference point for
performance estimation of the actual embedded system we envision for the final implementation.

For submission purposes, we will use the same setup as before. Start by creating a new
working directory on the server, so that you can properly submit your deliverables in the end.
You should also use this directory for preparing the files needed on the board, as well as a safe
storage space for any data you may need to backup from your prototyping board while running
this Canny measurement experiment.

mkdir hw7
 cd hw7

As usual, you may use your own model and video images or the provided solution from
Assignment 4, as follows:

ln –s ~ecps203/public/video video
 cp ~ecps203/public/CannyA4_ref.cpp Canny.cpp

However, for the actual experiment, you will now use the Raspberry Pi prototyping board that
you have received at the beginning of the quarter as part of the MECPS program.

2. Compiling and running the Canny Edge Detector on the prototyping board

The following instructions outline how to instrument the Canny C++ application for real-time
measurements and then run it on the Raspberry Pi board to observe the timing.

2

Step 1: Prepare your prototyping board

1) While not strictly required, we recommend that you make a backup of all the contents on
your Raspberry Pi SD card. Thus, if anything goes wrong during this experiment, you have a
safe point to return to.

2) Install the Raspbian software on the Raspberry Pi board. (If you have already installed
Raspbian on your Raspberry Pi, you can skip this step.)

a) Go the the offical website of Raspberry Pi, and click “DOWNLOADS”

b) Download “NOOBS” as a zip file

c) Unpack the “NOOBS” package onto your SD card

d) Plug the SD card into your Raspberry Pi and connect the board to a monitor, a mouse
and a keyboard. Power up the board.

e) Select Raspbian as the operating system, and NOOBS will automatically install it for you

Step 2: Compile the Canny C++ application

Again, we will use as starting point the clean application source code of the Canny Edge
Detector that you have prepared in Assignment 4.

1) Copy the source file Canny.cpp and the input images to your Raspberry Pi. You can do
this either via a USB flash drive or by connecting your Raspberry Pi to the network.

2) Open the terminal. You can find it in the menu bar which is on top of your screen.

3) Change into the directory where your source file is stored. For example, if you put it in
project/hw7, then go there:

cd ~/project/hw7

4) Compile the Canny application with the GNU compiler to ensure it works on your board

g++ -Wall canny.cpp –o canny
./canny

 Step 3: Instrument the source code with timing measurement instructions

1) Include the time.h header file in your canny.cpp

#include <time.h>

2) In order to start the timer, place the following statement right before the function call to be
measured:

clock_t start = clock();

3

3) In order to stop the timer, place the following statement right after the function call to be
measured:

clock_t finish = clock();

4) Then, to calculate the run time of the measured function in seconds, you can use a
calculation like this:

double totaltime = (double)(finish-start)/CLOCKS_PER_SEC;

Step 4: Note the delays of the major Canny functions

1) Finally print the measured delays to the screen, for example, but using the printf function

printf("function_name run time %f secs\n", totaltime);

2) Using the above instrumentation, measure the real-time delay of all the functions in the
Canny algorithm that we have represented as separate modules in the SystemC model of
the previous Assignment 6.

Note that all functions will report multiple measurements due to the processing of the video
stream. However, for our estimation purposes we are interested in the average run time per
function call. Thus, calculate the arithmetic mean of these values and report them.

3. Submission:

For this assignment, submit the following deliverables:

canny.cpp (the Canny C++ model with timing instrumentation)
canny.txt (a brief text file with the table of measurement results)

The text file should briefly describe your efforts and any problems you encountered, as well as
report your measured timing.

To submit your deliverables, change into the parent directory of your hw7 directory and run the
~ecps203/bin/turnin.sh script. As before, this command will locate the current
assignment files and allow you to submit them.

Again, late submissions will not be considered!

To double-check that your submitted files have been received, you can run the
~ecps203/bin/listfiles.py script.

For any technical questions, please consult with the TA in the lab or use the course message
board.

--
Rainer Doemer (EH3217, x4-9007, doemer@uci.edu)

