Embedded Systems Modeling and Design

ECPS 203 e

Fall 2019 UCI &5n e
Assignment 9

Posted: November 27, 2019

Due: December 4, 2019 at 6pm

Topic: Throughput optimization of the Canny Edge Decoder

1. Setup:

This assignment is the final chapter in the modeling of our application example, the Canny Edge
Detector, as an embedded system model in SystemC suitable for SoC implementation. Here,
we will optimize the pipelined model obtained in the previous assignment so that the pipeline
stages are better balanced and therefore the throughput of the design is further improved. In
particular, we apply more optimizations to reduce the execution time of the longer pipeline
stages.

Again, we will use the same setup as for the previous assignments. Start by creating a new
working directory with a link to the video files.

mkdir hw9

cd hw9
In —s ~ecps203/public/video video

As starting point, you can use your own SystemC model which you have created in the previous

Assignment 8. Alternatively, you may start from the provided solution for Assignment 8 which
you can copy as follows:

cp ~ecps203/public/CannyA8 ref.cpp Canny.cpp

You may also want to reuse the MakeFi le from the previous assignments:
cp ~ecps203/public/MakefileA5 Makefile

As before, you will need to adjust your stack size again. If you use the csh or tcsh shell, use:
limit stacksize 128 megabytes

On the other hand, if you use the sh or bash shell, use this:

ulimit -s 128000

Finally, we will use one more tool named ImageDi T in this assignment which you can copy as
well:

cp ~ecps203/public/ImageDiff ./

1



We will use this ImageDi T tool for comparing the generated images instead of the previously
used Linux diff tool, as outlined in the instructions below.

2. Throughput optimization of the Canny Edge Decoder model

For maximum throughput, a pipeline needs balanced minimum stage delays. So we will improve
the balance by minimizing the longest stages.

Step 1: Turn on compiler optimizations for maximum execution speed

As discussed in the lectures, we can exploit further options for improving the performance of our
Canny Edge Detector implementation, beyond the pipelining and parallelization that we have
already applied in Assignment 8. One easy choice is to enable compiler optimizations.

Review Assignment 7 where we measured the timing of the major Canny functions on the
prototyping board. Recall that we compiled the application without optimization:

g++ -Wall canny.cpp —0 canny

Given that the GNU compiler offers many optimization options for generating faster executables,
run the compiler anew with optimizations enabled, and then measure the timing again.

A general-purpose optimization flag for the GNU compiler is —02 which you should test. Other
possible options include —03, -mfloat-abi=hard, -fmpu=neon-fp-armv8, and —mneon-
for-64bits, and others (for reference, see for instance
https://qist.qgithub.com/fm4dd/c663217935dc17f0fc73c9c81b0aa845).

Experiment with several options and measure the timing of the Canny functions for each of
them. Choose the best result and take note of these values. Then, back-annotate the improved
timing into the source code of your SystemC model and simulate it for validation of correctness.
The throughput should show in a significantly higher FPS rate.

Keep a copy of your model with the updated timing at this point and name it CannyA9_stepl.
Step 2: Consider fixed-point calculations instead of floating-point arithmetic (NMS module only)

In order to further improve the throughput of our video processing pipeline, we need to balance
the load of the pipeline stages. Specifically, we need to optimize the stage with the longest
stage delay. In the following, we will experiment with fixed-point arithmetic that can often
improve execution speed when floating-point operations are too slow. In other words, we want
to replace existing floating-point calculations by faster and cheaper fixed-point arithmetic with an
acceptable loss in accuracy.

For this step in particular, we will assume that the Non_Max_Supp module is a bottleneck in our
pipeline that we want to speed-up. In the Canny algorithm, the Non_Max_Supp module is a
good target where we can easily apply this optimization. (Generally, this technique can be
applied also to other components, but we will limit our efforts to only the Non_Max_Supp block
in this assignment.)



Find the non_max_supp function in the source code of your model. Identify those variables and
statements which use floating-point (i.e. Float type) operations. There are only 4 variables
defined with floating-point type. Change their type to integer (int).

Next, we need to adjust all calculations that involve these variables. In particular, we need to
add appropriate shift-operations so that the integer variables can represent fixed-point values
within appropriate ranges. Since the details of such arithmetic transformations are beyond the
scope of this course, we provide very specific instructions here.

Locate the following two lines of code:

xperp
yperp

-(gx = *gxptr)/((float)m00);
(9y = *gyptr)/((float)m00);

Comment out those lines and insert the following statements as replacement:

gy = *gyptr;
xperp = -(gx<<16)/m00;
yperp = (gy<<16)/m00;

To ensure functional correctness, compile and simulate your model. However, don’t be
disappointed if your make test fails! Note that the Makefile used so far compares the
generated frames against the reference images and expects exact matches. This arithmetic
transformation, however, is not guaranteed to be exact. It is only an approximation!

In order to determine whether or not fixed-point arithmetic is acceptable for our application, we
need to compare the image quality. You can do this by looking at the images (e.g. use eog to
display them on your screen), or better by using the provided ImageDi ff tool. This command-
line tool is built from Canny source code functions and compares the individual pixels of two
input images (first and second argument) and generates an output image (third argument,
optional) which shows the differences. It also reports the number of mismatching pixels found.
For example, use ImageDi T as follows:

-/ImageDiff Frame._.pgm video/Frame.pgm diff._pgm

You may want to adjust your Makefi le so that the previously used Linux diff command is
replaced by calling the ImageD i ff tool instead.

Decide for yourself whether or not you find the changes incurred due to the use of fixed-point
arithmetic acceptable for our edge detection application. At the same time, measure the
execution time of the modified non_max_supp function on your prototyping board (after
applying the fixed-point modification to the source code) and decide whether or not this change
is worth it for our real-time video goal. Describe your reasoning and decision in the Canny . txt
file.

Regardless what you decide, keep a copy of your model at this point and name it
CannyA9_step?2.

Report the observed timings for the two models in the following table:



Model Frame Delay Throughput Total simulated time
CannyA9_stepl -.. ms --- FPS ... ms
CannyA9 step2 ... Ins ... FPS -.. Ins

As discussed in the lectures, if the throughput of your model at this stage does not meet the
real-time goal of 30 FPS yet, you can still decide to reduce some requirements for our
application, for example, reduce the image size or simply accept a lower FPS rate for the end
user.

At the end of your Canny . txt file, outline briefly what you decide and why.

3. Submission:
For this final assignment, submit the following deliverables:

Canny.cpp (your final SystemC model)
Canny .txt (performance table, design decisions, and reasoning)

To submit these files, change into the parent directory of your hw9 directory and run the
~ecps203/bin/turnin.sh script. To double-check that your submitted files have been
received, you can run the ~ecps203/bin/listfiles.py script.

As always, be sure to submit on time. Late submissions will not be considered!

For any technical questions, please use the course message board.

Rainer Doemer (EH3217, x4-9007, doemer@uci.edu)



