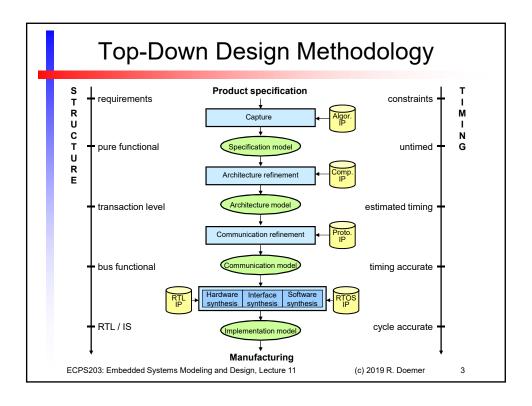
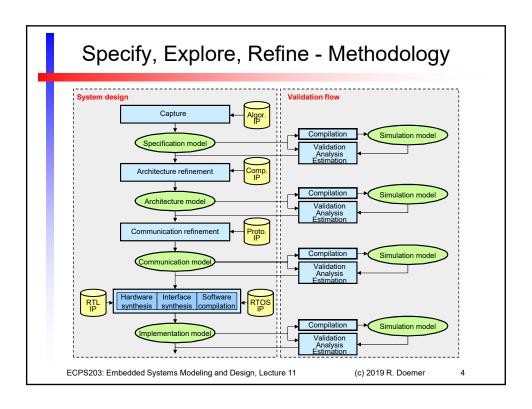
ECPS 203 Embedded Systems Modeling and Design Lecture 11

Rainer Dömer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems University of California, Irvine


Lecture 11: Overview


- Embedded System Design Flow
 - Top-down design methodology
 - Refinement-based design flow
 - · Specify
 - Explore
 - Refine
- System-on-Chip Environment (SCE)
 - Application example: GSM Vocoder
 - Interactive demonstration (part 1)

ECPS203: Embedded Systems Modeling and Design, Lecture 11

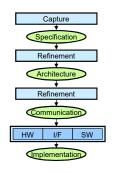
(c) 2019 R. Doemer

2

- Refinement steps
 - Architecture refinement (Specification -> Architecture)
 - Communication refinement (Architecture -> Communication)
 - Cycle-accurate refinement (Communication -> RTL/IS)
 - HW / SW / interface synthesis
- Levels of abstraction
 - Specification model:
 - Architecture model:
 - Communication model:
 - Implementation model:
- estimated, structural timed, bus-functional
 - timed, bus-functional cycle-accurate, RTL/IS

untimed, functional

- Component data bases
 - Algorithms for specification
 - Components for architecture
 - Busses for communication
 - RTOS for SW
 - RTL components for HW


(c) 2019 R. Doemer

ner

ECPS203: Embedded Systems Modeling and Design, Lecture 11

Specify, Explore, Refine - Design Flow

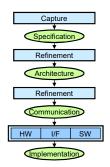
- · Refinement Step 1: System Architecture
 - Allocation of Processing Elements (PE)
 - Type and number of processors
 - · Type and number of custom hardware blocks
 - · Type and number of system memories
 - Mapping to PEs
 - · Map each behavior to a PE
 - Map each channel to a PE
 - Map each variable to a PE
 - > Result
 - System architecture of concurrent PEs with abstract communication via channels

ECPS203: Embedded Systems Modeling and Design, Lecture 11

(c) 2019 R. Doemer

6

(c) 2019 R. Doemer


3

Specify, Explore, Refine - Design Flow

- Refinement Step 2: PE Scheduling
 - For each PE, serialize the execution of behaviors to a single thread of control
 - Option (a): Static scheduling
 - For each set of concurrent behaviors, determine fixed order of execution
 - Option (b): Dynamic RTOS scheduling
 - Choose scheduling policy, e.g. round-robin or priority-based
 - For each set of concurrent behaviors, determine scheduling priority

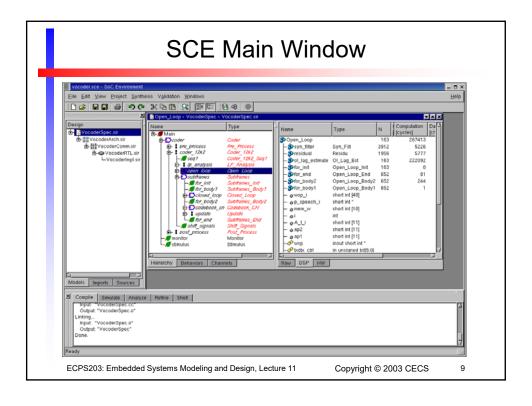
> Result

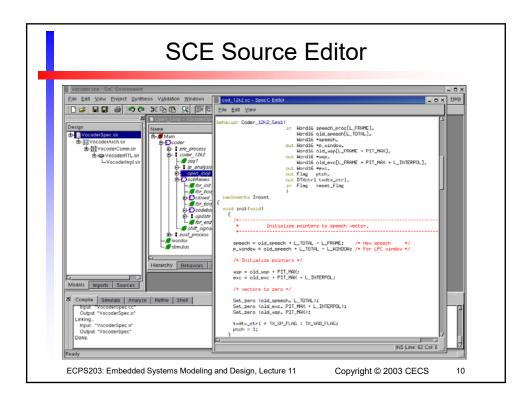
 System model with abstract scheduler inserted in each PE

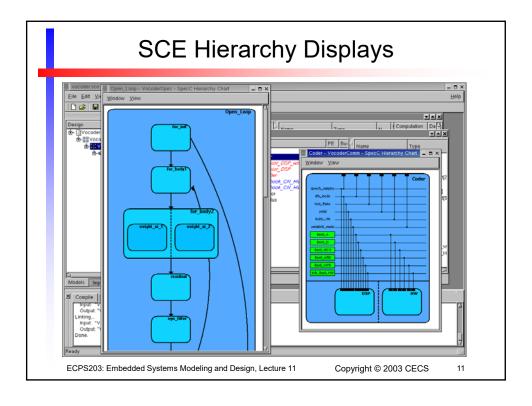
ECPS203: Embedded Systems Modeling and Design, Lecture 11

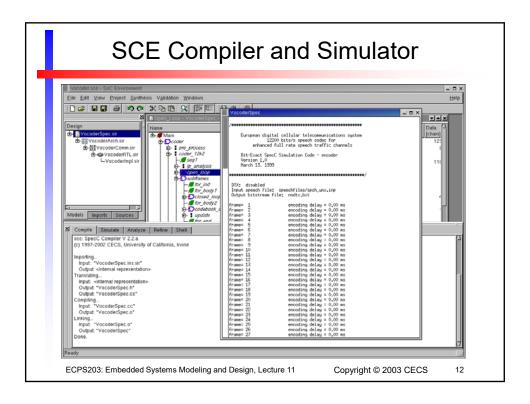
(c) 2019 R. Doemer

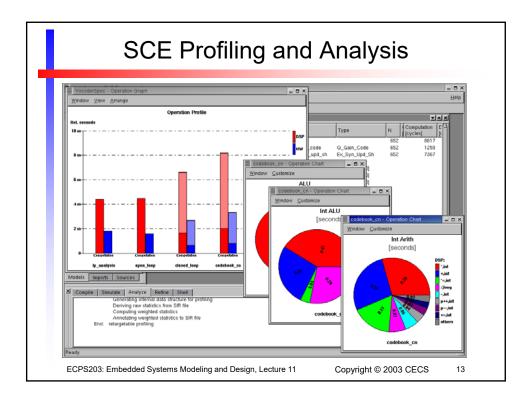
7


System-on-Chip Environment (SCE)


- Integrated Development Environment (IDE) with support of:
 - Graphical frontend (sce, scchart)
 - SLDL-aware editor (sced)
 - Compiler and simulator (scc)
 - Profiling and analysis (scprof)
 - Architecture refinement (scar)
 - RTOS refinement (scos)
 - Communication refinement (sccr)
 - RTL refinement (scrt1)
 - Software refinement (sc2c)
 - Scripting interface (scsh)
 - Tools and utilities (sir_list, sir_tree, ...)


ECPS203: Embedded Systems Modeling and Design, Lecture 11


(c) 2019 R. Doemer


8

SCE Demonstration

- Application Example: GSM Vocoder
 - Enhanced full-rate voice codec
 - GSM standard for mobile telephony (GSM 06.10)
 - · Lossy voice encoding/decoding
 - Incoming speech samples @ 104 kbit/s
 - · Encoded bit stream @ 12.2 kbit/s
 - Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)
 - Real-time constraint:
 - max. 20ms per speech frame (max. total of 3.26s for sample speech file)
 - SpecC specification model
 - 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)
 - · 73 leaf behaviors
 - 9139 formatted lines of SpecC code (~13000 lines of original C code, including comments)

ECPS203: Embedded Systems Modeling and Design, Lecture 11

Copyright © 2003 CECS

14