
ECPS203: Embedded Systems Modeling and Design Lecture 15

(c) 2019 R. Doemer 1

ECPS 203
Embedded Systems Modeling and Design

Lecture 15

Rainer Dömer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 2

Lecture 15: Overview

• Project Discussion
– Status and next steps

– A5: Test bench model of the Canny Edge Detector

– A6: Structural refinement of the DUT module

– A6: Profiling of the Canny Edge Detector functions

– A7: Performance measurement on prototyping board

• Assignment 8
– Back-annotation of timing estimates into SystemC model

Observing computation delay during simulation

– Pipelining and parallelization of the DUT module
Model refinement on the whiteboard

Discussion

ECPS203: Embedded Systems Modeling and Design Lecture 15

(c) 2019 R. Doemer 2

ECPS 203 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a video camera of a drone

– Video taken by a drone flying over UCI Engineering Plaza
• Available on the server: ~ecps203/public/DroneFootage/

• High resolution, 2704 by 1520 pixes

• Representative sample, using 30 extracted frames for test bench model

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 3

Engineering012.png Engineering012_edges.pgm

Project Assignment 5

• Task: Test bench for the Canny Edge Detector
– Convert C++ model to SystemC model

– Add a test bench structure around the C++ model

– Wrap DUT into a platform model with explicit I/O units

• Steps
1. Create test bench structure: Stimulus, Platform, Monitor

2. Create platform model: DataIn, DUT, DataOut
3. Localize functions and use sc_fifo channels for communication

 Pay attention to stack sizes for every thread

• Deliverables
– SystemC source code and text file: Canny.cpp, Canny.txt

• Due
– Wednesday, November 6, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 4

ECPS203: Embedded Systems Modeling and Design Lecture 15

(c) 2019 R. Doemer 3

Project Assignment 5

• Task: Test bench for the Canny Edge Detector
– Expected instance tree

Top top

|------ Monitor monitor

|------ Platform platform

| |------ DUT canny

| |------ DataIn din

| |------ DataOut dout

| |------ sc_fifo<IMAGE> q1

| \------ sc_fifo<IMAGE> q2

|------ Stimulus stimulus

|------ sc_fifo<IMAGE> q1

\------ sc_fifo<IMAGE> q2

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 5

Project Assignment 5

• Task: Test bench for the Canny Edge Detector
– Discussion on whiteboard: Top-level and Platform structure

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 6

White board photo goes here!

ECPS203: Embedded Systems Modeling and Design Lecture 15

(c) 2019 R. Doemer 4

Project Assignment 6

• Task: Structural refinement of the DUT module
– Refine the structural hierarchy of the DUT module

– Refine the structural hierarchy of the Gaussian Smooth module

– Profile the relative complexity of the Canny functions

• Steps
1. Create structure in DUT: Gaussian Smooth, …, Apply Hysteresis

2. Create structure in Gaussian Smooth: Input, Gauss, BlurX, BlurY

3. Profile the algorithm, obtain relative computational complexity

• Deliverables
– Canny.cpp (refined structural model)

– Canny.txt (profile of relative complexity of the DUT modules)

• Due
– Wednesday, November 13, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 7

Project Assignment 6

• Step 1: Refined structure of the DUT module
– Expected module instance tree

Platform platform

|------ DataIn din

|------ DUT canny

| |------ Gaussian_Smooth gaussian_smooth

| |------ Derivative_X_Y derivative_x_y

| |------ Magnitude_X_Y magnitude_x_y

| |------ Non_Max_Supp non_max_supp

| \------ Apply_Hysteresis apply_hysteresis

\------ DataOut dout

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 8

ECPS203: Embedded Systems Modeling and Design Lecture 15

(c) 2019 R. Doemer 5

Project Assignment 6

• Step 2: Refined structure of the Gaussian Smooth block
– Expected module instance tree

DUT canny

|------ Gaussian_Smooth gaussian_smooth

| |------ Receive_Image receive

| |------ Gaussian_Kernel gauss

| |------ BlurX blurX

| \------ BlurY blurY

|------ Derivative_X_Y derivative_x_y

|------ Magnitude_X_Y magnitude_x_y

|------ Non_Max_Supp non_max_supp

\------ Apply_Hysteresis apply_hysteresis

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 9

Project Assignment 6

• Task: Structural model of the Canny Edge Detector
– Discussion on whiteboard: Refined DUT structure

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 10

White board photo goes here!

ECPS203: Embedded Systems Modeling and Design Lecture 15

(c) 2019 R. Doemer 6

Project Assignment 6

• Step 3: Profile the Canny functions
 Performance profiling of the Canny Edge Detector

 Determine the relative complexity of the Canny functions
• Is there any performance bottleneck?

• If so, where?

– Use the GNU C/C++ profiling tools
 g++ -pg

 gprof

1. Compile the SystemC source code with option -pg

2. Run the simulation once with instrumentation,
obtain gmon.out

3. Run the profiler: gprof Canny

4. Validate the reported call tree
5. Analyze the “flat profile” for the DUT components (self)

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 11

Project Assignment 6

• Step 3: Profile the Canny functions,
obtain relative computational complexity

– Expected complexity comparison (in Canny.txt):

Gaussian_Smooth ...%

|------ Gaussian_Kernel ...%

|------ BlurX ...%

\------ BlurY ...%

Derivative_X_Y ...%

Magnitude_X_Y ...%

Non_Max_Supp ...%

Apply_Hysteresis ...%

100%

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 12

ECPS203: Embedded Systems Modeling and Design Lecture 15

(c) 2019 R. Doemer 7

Project Assignment 6

• Step 3: Profile the Canny functions,
obtain relative computational complexity

– Profiled complexity comparison (in Canny.txt):

Gaussian_Smooth 40.57%

|------ Gaussian_Kernel 0.00%

|------ BlurX 17.23%

\------ BlurY 23.34%

Derivative_X_Y 6.26%

Magnitude_X_Y 15.90%

Non_Max_Supp 23.98%

Apply_Hysteresis 12.29%

100%

 Profiling results vary, but Gaussian Smooth is a bottleneck!

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 13

Project Assignment 7

• Task: Performance measurement on prototyping board
– Run C++ model of Canny Edge Detector on Raspberry Pi

– Obtain absolute timing measurements of Canny functions

• Steps
1. Prepare the prototyping board with Raspbian operating system
2. Upload Canny.cpp from Assignment 4 and compile it

3. Instrument the source code with real-time measurements

4. Note the computation delays of the major Canny functions

• Deliverables
– Canny.cpp (model instrumented with timing measurements)

– Canny.txt (table of measured delays)

• Due
– Wednesday, November 20, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 14

ECPS203: Embedded Systems Modeling and Design Lecture 15

(c) 2019 R. Doemer 8

Project Assignment 7

• Task: Performance measurement on prototyping board
– Expected timing measurements (in Canny.txt):

Gaussian_Smooth ... sec

|------ Gaussian_Kernel ... sec

|------ BlurX ... sec

\------ BlurY ... sec

Derivative_X_Y ... sec

Magnitude_X_Y ... sec

Non_Max_Supp ... sec

Apply_Hysteresis ... sec

TOTAL ... sec

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 15

Project Assignment 8

• Task: Pipelining and parallelization of the DUT module
– Back-annotate estimated delays to observe timing in the model

– Pipeline and parallelize the model to improve throughput

• Steps
1. Instrument model with simulated time to observe frame delay

2. Back-annotate estimated timing into DUT components

3. Improve test bench to observe frame throughput

4. Pipeline the DUT into a sequence of 7 stages with buffer size 1

5. Slice the BlurX and BlurY modules into 4 parallel threads

• Deliverables
– Canny.cpp: pipelined and parallelized SystemC model

– Canny.txt: table of observed frame delays and throughput

• Due: Wednesday, November 27, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 16

ECPS203: Embedded Systems Modeling and Design Lecture 15

(c) 2019 R. Doemer 9

Project Assignment 8

• Task: Pipelining and parallelization of the DUT module
– Expected simulated performance values (in Canny.txt):

Model Frame Delay Throughput Total

CannyA8_step1 ... ms ... ms

CannyA8_step2 ... ms ... ms

CannyA8_step3 ... ms ... FPS ... ms

CannyA8_step4 ... ms ... FPS ... ms

CannyA8_step5 ... ms ... FPS ... ms

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 17

Project Assignment 8

• Review: Observing simulated time in SystemC
– Header file systemc.h

• Reference: Doulos SystemC Training (part 1, slide 40)

• Access to simulation time

– Time units:
enum sc_time_unit {SC_FS, SC_PS, SC_NS, SC_US,
SC_MS, SC_SEC};

– Constructor:
sc_time(double, sc_time_unit)

– Current simulation time:
sc_time_stamp(), sc_delta_count()

– Conversion functions:
.to_string().c_str()

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 18

ECPS203: Embedded Systems Modeling and Design Lecture 15

(c) 2019 R. Doemer 10

Project Assignment 8

• Review: Observing simulated time in SystemC
• Example: Print the current simulation time
#include “systemc.h”

...

sc_time t;

uint64 d;

...

t = sc_time_stamp();

printf(“Time is now %s pico seconds.\n”, t.to_string().c_str());

d = sc_delta_count();

printf(“(delta count is %ull)\n”, d);

wait(42000, SC_NS);

printf(“Time is now %s pico seconds.\n”, t.to_string().c_str());

printf(“Time is now %s nano seconds.\n”,

(t/1000).to_string().c_str());

...

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 19

Project Assignment 8

• Timed test bench model for the Canny Edge Detector
– Discussion on whiteboard: Chart of refined test bench structure

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 20

White board photo goes
here!

ECPS203: Embedded Systems Modeling and Design Lecture 15

(c) 2019 R. Doemer 11

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Discussion on whiteboard: Chart of pipelined DUT structure

ECPS203: Embedded Systems Modeling and Design, Lecture 15 (c) 2019 R. Doemer 21

White board photo goes here!

