

Project Assigr	nment	6	
 Step 3: Profile the Canny functions, obtain relative computational complexity Profiled complexity comparison (in Canny.txt): 			
Gaussian_Smooth		40.57%	
Gaussian_Kernel	0.00%		
BlurX	17.23%		
\ BlurY	23.34%		
Derivative_X_Y		6.26%	
Magnitude_X_Y		15.90 %	
Non_Max_Supp		23.98%	
Apply_Hysteresis		12.29 %	
		100%	
Profiling results vary, but Gaussia	an Smooth i	s a bottlenecł	k !
ECPS203: Embedded Systems Modeling and Design, Lecture 16	(c) 2	2019 R. Doemer	4

Project Assign	ment 7
 Task: Performance measurement Expected timing measurements (in 	ent on prototyping board Canny.txt):
Gaussian_Smooth Gaussian_Kernel BlurX \ BlurY	sec sec sec sec
Derivative_X_Y Magnitude_X_Y Non_Max_Supp Apply_Hysteresis	sec sec sec sec sec
TOTAL	sec

Project Assignment 8			
 Pipelined and parallel model of the Canny Edge Detector Back-annotation of measured timing delays (step 2) 			
Receive, Make_Kernel 0 ms BlurX 1710 ms BlurY 1820 ms Derivative_X_Y 480 ms Magnitude_X_Y 1030 ms Non_Max_Supp 830 ms Apply_Hysteresis 670 ms TOTAL: 6540 ms Throughput: 1/1820ms			
0.549 FPS ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 12			

Project As	ssignme	ent 8	
 Pipelined and parallel model of the Canny Edge Detector Back-annotation of measured timing delays 4-way parallelization of BlurX and BlurY modules (step 5) 			
Receive, Make_Kernel BlurX BlurY Derivative_X_Y Magnitude_X_Y Non_Max_Supp Apply_Hysteresis TOTAL:	0 ms 1710 ms 1820 ms 480 ms 1030 ms 830 ms 670 ms ====================================	0 ms 427 ms 455 ms 480 ms 1030 ms 830 ms 670 ms 3892 ms	
Throughput:	1/1820ms 0.549 FPS	1/1030ms 0.971 FPS	
ECPS203: Embedded Systems Modeling and Design	, Lecture 16	(c) 2019 R. Doemer 14	

Project Assignment 8					
 Task: Pipelining and parallelization of the DUT module – Expected simulated performance values (in Canny.txt): 					
Model	Frame Delay	Throughput	Total		
CannyA8_step3	ms		ms		
CannyA8_step2	ms		ms		
CannyA8_step3	ms	FPS	ms		
CannyA8_step4	ms	FPS	ms		
CannyA8_step	ms	FPS	ms		
FOR0000 First added Orighting Madell	n and Darima Lasters 40				