
ECPS203: Embedded Systems Modeling and Design Lecture 16

(c) 2019 R. Doemer 1

ECPS 203
Embedded Systems Modeling and Design

Lecture 16

Rainer Dömer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 2

Lecture 16: Overview

• Project Discussion
– Status and next steps

– A6: Profiling of the Canny Edge Detector functions

– A7: Performance measurement on prototyping board

• Assignment 8
– Back-annotation of timing estimates into SystemC model

Observing computation delay during simulation

– Pipelining and parallelization of the DUT module
Model refinement on the whiteboard

Discussion

ECPS203: Embedded Systems Modeling and Design Lecture 16

(c) 2019 R. Doemer 2

Project Assignment 6

• Task: Structural model of the Canny Edge Detector
– Discussion on whiteboard: Refined DUT structure

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 3

White board photo goes here!

Project Assignment 6

• Step 3: Profile the Canny functions,
obtain relative computational complexity

– Profiled complexity comparison (in Canny.txt):

Gaussian_Smooth 40.57%

|------ Gaussian_Kernel 0.00%

|------ BlurX 17.23%

\------ BlurY 23.34%

Derivative_X_Y 6.26%

Magnitude_X_Y 15.90%

Non_Max_Supp 23.98%

Apply_Hysteresis 12.29%

100%

 Profiling results vary, but Gaussian Smooth is a bottleneck!

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 4

ECPS203: Embedded Systems Modeling and Design Lecture 16

(c) 2019 R. Doemer 3

Project Assignment 7

• Task: Performance measurement on prototyping board
– Run C++ model of Canny Edge Detector on Raspberry Pi

– Obtain absolute timing measurements of Canny functions

• Steps
1. Prepare the prototyping board with Raspbian operating system
2. Upload Canny.cpp from Assignment 4 and compile it

3. Instrument the source code with real-time measurements

4. Note the computation delays of the major Canny functions

• Deliverables
– Canny.cpp (model instrumented with timing measurements)

– Canny.txt (table of measured delays)

• Due
– Wednesday, November 20, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 5

Project Assignment 7

• Task: Performance measurement on prototyping board
– Expected timing measurements (in Canny.txt):

Gaussian_Smooth ... sec

|------ Gaussian_Kernel ... sec

|------ BlurX ... sec

\------ BlurY ... sec

Derivative_X_Y ... sec

Magnitude_X_Y ... sec

Non_Max_Supp ... sec

Apply_Hysteresis ... sec

TOTAL ... sec

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 6

ECPS203: Embedded Systems Modeling and Design Lecture 16

(c) 2019 R. Doemer 4

Project Assignment 7

• Task: Performance measurement on prototyping board
– Measured delays on Raspberry Pi 3 (in Canny.txt):

Gaussian_Smooth 3.53 sec

|------ Gaussian_Kernel 0.00 sec

|------ BlurX 1.71 sec

\------ BlurY 1.82 sec

Derivative_X_Y 0.48 sec

Magnitude_X_Y 1.03 sec

Non_Max_Supp 0.83 sec

Apply_Hysteresis 0.67 sec

TOTAL 6.54 sec

 This performance is far too slow for real-time video!

 Discussion: What options exist to speed this up?

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 7

Project Assignment 7

• Discussion: Measured delays on Raspberry Pi 3
– TOTAL 6.54 seconds

 This performance is far too slow
for real-time video!

 Discussion:
What options exist
to speed this up?

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 8

White board
discussion and

photo goes
here!

ECPS203: Embedded Systems Modeling and Design Lecture 16

(c) 2019 R. Doemer 5

Project Assignment 8

• Task: Pipelining and parallelization of the DUT module
– Back-annotate estimated delays to observe timing in the model

– Pipeline and parallelize the model to improve throughput

• Steps
1. Instrument model with simulated time to observe frame delay

2. Back-annotate estimated timing into DUT components

3. Improve test bench to observe frame throughput

4. Pipeline the DUT into a sequence of 7 stages with buffer size 1

5. Slice the BlurX and BlurY modules into 4 parallel threads

• Deliverables
– Canny.cpp: pipelined and parallelized SystemC model

– Canny.txt: table of observed frame delays and throughput

• Due: Wednesday, November 27, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 9

Project Assignment 8

• Timed test bench model for the Canny Edge Detector
– Discussion on whiteboard: Chart of refined test bench structure

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 10

White board photo goes
here!

ECPS203: Embedded Systems Modeling and Design Lecture 16

(c) 2019 R. Doemer 6

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Discussion on whiteboard: Chart of pipelined DUT structure

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 11

White board photo goes here!

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Back-annotation of measured timing delays (step 2)

Receive, Make_Kernel 0 ms
BlurX 1710 ms
BlurY 1820 ms
Derivative_X_Y 480 ms
Magnitude_X_Y 1030 ms
Non_Max_Supp 830 ms
Apply_Hysteresis 670 ms

=======
TOTAL: 6540 ms

=======

Throughput: 1/1820ms
0.549 FPS

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 12

ECPS203: Embedded Systems Modeling and Design Lecture 16

(c) 2019 R. Doemer 7

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Discussion on whiteboard: Parallel BlurX, BlurY functions (step 5)

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 13

White board
photo goes

here!

White board
photo goes

here!

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Back-annotation of measured timing delays

 4-way parallelization of BlurX and BlurY modules (step 5)

Receive, Make_Kernel 0 ms 0 ms
BlurX 1710 ms 427 ms
BlurY 1820 ms 455 ms
Derivative_X_Y 480 ms 480 ms
Magnitude_X_Y 1030 ms 1030 ms
Non_Max_Supp 830 ms 830 ms
Apply_Hysteresis 670 ms 670 ms

======= =======
TOTAL: 6540 ms 3892 ms

======= =======

Throughput: 1/1820ms 1/1030ms
0.549 FPS 0.971 FPS

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 14

ECPS203: Embedded Systems Modeling and Design Lecture 16

(c) 2019 R. Doemer 8

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Expected execution log with timing (after step 5)

0 s: Stimulus sent frame 1.
0 s: Stimulus sent frame 2.
0 s: Stimulus sent frame 3.

[...]
3422 ms: Stimulus sent frame 16.
3892 ms: Monitor received frame 1 with 3892 ms delay.
[...]
30672 ms: Monitor received frame 27 with 15920 ms delay.
30672 ms: 1.030 seconds after previous frame, 0.971 FPS.
31702 ms: Monitor received frame 28 with 15920 ms delay.
31702 ms: 1.030 seconds after previous frame, 0.971 FPS.
32732 ms: Monitor received frame 29 with 15920 ms delay.
32732 ms: 1.030 seconds after previous frame, 0.971 FPS.
33762 ms: Monitor received frame 30 with 15920 ms delay.
33762 ms: Monitor exits simulation.

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 15

Project Assignment 8

• Task: Pipelining and parallelization of the DUT module
– Expected simulated performance values (in Canny.txt):

Model Frame Delay Throughput Total

CannyA8_step1 ... ms ... ms

CannyA8_step2 ... ms ... ms

CannyA8_step3 ... ms ... FPS ... ms

CannyA8_step4 ... ms ... FPS ... ms

CannyA8_step5 ... ms ... FPS ... ms

ECPS203: Embedded Systems Modeling and Design, Lecture 16 (c) 2019 R. Doemer 16

